Kyungpook Math. J. Volume 13, Number 2 December, 1973

SHEAVES ON PRIME SPECTRUMS OF QUASI B-RINGS

By Hyung Koo Cha and Dall Sun Yun

1. Introduction.

.

Let A be a commutative ring with 1, the prime spectrum Spec(A) of A is the topological space with Zariski topology. That is, Spec(A) is the set of all prime ideals of A whose closed sets are of the form V(E), where E is a subset of A and V(E) the set of all prime ideals of A which contain E ([1], [7]). The object of this paper is to define a quasi B-ring (§2), since we can define a sheaf on the prime spectrum of such a ring by using basic open sets ($\S 2$ and <u>§</u>4).

We also give an example of a quasi B-ring in §3, and finally prove that

$$H^0_{\varphi}(X, \overline{S}) \cong \Gamma_{\varphi}(X: \prod_{x \in X} A_{p_x})$$

$$H_{\varphi}^{n}(X, \overline{S})=0 \ (n>I).$$

where A is a quasi B-ring, $X = \operatorname{Spec}(A)$, $\overline{S} =$ the sheaf on X is defined by using basic open sets of X, $\{H^n\}$ = the cohomologys functors and φ a family of supports on X (Theorem 3 in $\S4$).

Throughout this paper the word "ring" shall mean a commutative ring with 1.

2. Properties of Spec(A).

Let A be a ring, For each $f \in A$ we denote the complement of V(f) in $X = \operatorname{Spec}(A)$ by X_{f} . Then every open set in X is the union of open sets X_{f} , since $X - V(E) = X - \bigcap_{f \in E} V(f) = \left(\bigcap_{f \in E} V(f)\right)^{c} = \bigcup_{f \in E} V(f)^{c} = \bigcup_{f \in E} X_{f},$

where $V(f)^{c}$ is the complement of V(f) and E is a subset of A. This means that the family of open sets X_f is a basic of open sets for the Zariski topology ([6]). The sets X_f are called basic open sets of X.

242 Hyung Koo Cha and Dall Sun Yun

PROPOSITION 1. X = Spec(A) is compact. More generally, each X_f ($f \in A$) is compact.

PROOF. Assume $\mathscr{U} = \{U_i\}_{i \in I}$ is open covering of X. Since $\{X_f\}_{f \in A}$ is a base, for each $x \in U_i$ there exists an open set X_{f_i} with $x \in X_{f_i} \subset U_i$. Therefore we have an open covering $\{X_{f_i}\}_{i \in J}$ of X which is induced by \mathscr{U} . Thus, it follows

from
$$X = \bigcup_{i \in J} X_{f_i} \in \bigcup_{i \in J} V(f_i)^* = (\bigcap_{i \in J} V(f_i))^* = (V(\bigcup_{i \in J} f_i))^*$$
 that $V(\bigcup_{i \in J} f_i) = \phi = V(1)$,
and therefore there exist g_1, \dots, g_n in A such that $\sum_{i=1}^n g_i f_i = 1$. where $f_1, \dots, f_n \in \bigcup_{i \in J} f_i$. This implies that $V(\{f_1, \dots, f_n\}) = V(1)$, and thus $X = X_{f_1} \cup \dots \cup X_{f_n}$.
The second part of this proposition is proved by the same way as above.
We give the following conditions into $\operatorname{Spec}(A) = X$:
(C₁) Each element of X is closed.
(C₂) Each X_f is open and closed in X .
(C₃) Each open set of X is a compact subset.

THEOREM 1. Let Spec(A) satisfy the above conditions (C_1) , (C_2) , (C_3) . Then Spec(A) is a discrete topological space.

PROOF. Let x be a point of X. By (C_1) x is a closed set of X. We have to prove that x is also open in X. Since X-x is open there exist f_1, f_2, \dots, f_n in A such that $X-x=X_f \cup \dots \cup X_f$. Since each X_f is closed in X (by (C_2)), $X_f \cup$

$$\cdots \bigcup_{X_{i_n}} = X - x$$
 is closed. Therefore x is open.

Note that $x = p_x(:$ a prime ideal of A) is closed in X if and only if p_x is a maximal ideal of A. We give one more condition (C_4) below into Spec(A): (C_4) a finite union $X_{f_1} \cup \cdots \cup X_{f_n} (f_i \in A \text{ for } i=1, \dots, n)$ is equal to X_f for some $f \in A$.

A ring satisfying conditions $(C_1)-(C_4)$ above is called a *quasi B-ring* (for examples, see the next section).

3. Boolean rings.

Let A be a ring. If for each $x \in A$ 2x=0 and x(1+x)=0 then A is called a *Boolean ring*. In a Boolean ring A, for each $x \in A$ $x^2=x$, because of 2x=0 and x(1+x)=0, $x^2=-x$. Therefore we have that A is a Boolean ring and for each $x \in A$ $x=x^2$.

Sheaves on Prime Spectrums of Quasi B-Rings

243

PROPOSITION 2. Let A be a Boolean ring. Then

r

i) every prime ideal p of A is maximal and A/p is a field with two elements, ii) every finitely generated ideal in A is principal ideal.

PROOF. Suppose a prime ideal p of A. Then there exists an element x in A such that $x \notin p$. By the definition, $x(1+x)=0 \in p$ which implies that $1+x \in p$.

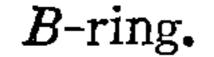
Thus $1 \equiv x \mod p$ and therefore $A/p = \{[0], [1]\}, \text{ where } [0] \text{ and } [1] \text{ are the classes containing 0 and 1, respectively. We complete the proof of i). For proof of ii), it suffices to consider an ideal <math>Ax_1 + Ax_2$, where $x_1, x_2 \in A$. Put $y = x_1 + x_2 + x_1x_2$, then we get $x_1 = x_1y$, $x_2 = x_2y$ and $x_1x_2 = x_1x_2y$ and therefore $Ax_1 + Ax_2 = Ay$.

For a Boolean ring A, we shall prove the following.

PROPOSITION 3. Let X = Spec(A). Then

i) Each $x \in X$ is closed in X. ii) For each $f \in A$, the set X_f is open and closed in X. iii) For $f_1, \dots, f_n \in A$ there exists an element f in A such that $X_{f_1} \cup \dots \cup X_{f_n} = X_f$ iv) X is a compact Hausdorff space.

PROOF. i) is easily proved by i) of the preceding proposition. ii): There exists a maximal ideal p of A such that $f \in p$. In this case g = 1 + fis not in p. By the definition of a Boolean ring we have f+g=1. Thus $V(\{f, g\}) = V(1) = V(f) \cap V(g) = \phi$ $(V(f) \cap V(g))^{c} = V(f)^{c} \cup V(g)^{c} = \phi^{c} = X, X_{f} \cup X_{g} = X$ Since $X_f \cap X_g = X_{fg}$ and $f \circ g = f(1+f) = 0$ we have $X - X_g = X_f - X_{fg} = X_f - X_0 = X_f$ and therefore X_f is closed (Note: $X_0 = X - V(0) = \phi$). iii): $X_{f_1} \cup \cdots \cup X_{f_n} = V(f_1)^c \cup \cdots \cup V(f_n)^c = (V(f_1) \cap \cdots \cap V(f_n))^c = V(\{f_1, \dots, f_n\})^c$ $=V(A_{f_1}+\dots+A_{f_n})^c$. By ii) of Proposition 2, there exists an element f in A such that $Af = Af_1 + \dots + Af_n$, and thus $X_{f_1} \cup \dots \cup X_{f_n} = V(Af)^c = V(f)^c = X_f$. iv):Note that each element x of X is the maximal ideal p_x of A. Take two elements x and y in X with $x \neq y$. Then $p_x \neq p_y$. We can choose two elements f and g in A such that $f \in p_x$, $g \in p_y$, $f \notin p_y$, $g \notin p_x$ and f + g = 1 (see proof of ii of this proposition). In this case, X_f is an open neighborhood of y, X_g is an open neighborhood of x, and $X_f \cap X_g = X_{fg} = \phi$. Therefore X is a Hausdorff space. Let A be a finite Boolean ring. By the preceding proposition, A is a quasi



244 Hyung Koo Cha and Dall Sun Yun

4. The sheaf of a quasi B-ring.

In this section we only deal with quasi *B*-rings. Therefore the word "ring" means a quasi *B*-ring. Let *A* be a ring, and let $X=\operatorname{Spec}(A)$. By the definition in the section 2, each open set in $\operatorname{Spec}(A)$ is of the form X_f for some $f \in A$. We want to define a presheaf on $\operatorname{Spec}(A)$, using basic open sets.

, ,

PROPOSITION 4. If $X_g \subset X_f$ in Spec(A), then there exists an equation of the form $g^n = uf$ for some integer n > 0 and some $u \in A$

PROOF. $X_g \subset X_f$ implies that $X - V(g) \subset X - V(f)$. From $V(f) \subset V(g)$ we know that there exist $u \in A$ and n > 0 such that $g^n = uf$.

We put $S = \{f, f^2, \dots\}$ and $S^{-1}A = A_f$. The process of passing from A to A_f is *localization* at $\{f, f^2, \dots\}$.

Using the preceding proposition we define a A-module map $\rho_{g,f}: A_f \rightarrow A_g$ by $\rho_{f,g}(a/f^m) = u^m a/g^{nm}$ where $X_g \subset X_f$ and $a \in A$. In this case, if $X_g = X_f$ then A_g = A_f , because there exist u_1, u_2 in A such that $g^m = u_1 f$ and $f^n = u_2 g$ for some m, n > 0, and

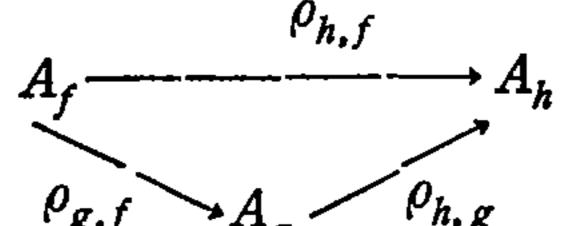
$$[\rho_{f,g} \circ \rho_{g,f}](a/f^{p}) = \frac{u_{1}^{p}u_{2}^{mp}a}{f^{mnp}} = \frac{a}{f^{p}}.$$

We define two categories X_A and M_A as follows:

 X_A =the category of all basic open sets of X=Spec (A) and inclusion map, M_A =the category of all A-modules and A-module maps.

PROPOSITION 5. The contravariant functor $S:X_A \to M_A$ which is defined by $S(X_f) = A_f$ and $S(i) = \rho_{g,f}$ for any inclusion map $i:X_g \to X_f$ is a presheaf on X. Furthermore, for every point $x \in X$, the stalk S_x at x is isomorphic to A_p where x = p is a prime ideal of A.

PROOF. For the first part of this proposition, it suffices to prove that the diagram



Sheaves on Prime Spectrums of Quasi B-Rings 245

is commutative, where $X_h \subset X_g \subset X_f$, because $\rho_{f,f}$ is the identity map ([5], [8]). From the relation $X_h \subset X_g \subset X_f$ we have equations $g^n = u_1 f$, $h^p = u_2 g$ and $h^q = u_3 f$, where $u_{1, u_2, u_3} \in A$ and n, p, q > 0. For any element $\frac{a}{f^m} \in A_f$, $\rho_{n} \circ \rho_{-} \left(\underbrace{a}_{-} \right) = \underbrace{u_{2}^{nm} u_{1}^{m} a}_{= \underbrace{a}_{-} \underbrace{a}_{-} \underbrace{u_{3}^{m} a}_{= \underbrace{u_{3}^{m} a}_{= \underbrace{a}_{-} \underbrace{a}_{-} \underbrace{u_{3}^{m} a}_{= \underbrace{a}_{-} \underbrace{a}_{-} \underbrace{a}_{-} \underbrace{u_{3}^{m} a}_{= \underbrace{a}_{-} \underbrace{a}$

$$h, g, g, f \setminus f^m = h^{pnm} h, f \setminus f^m = h^{qm}$$

Since we have

$$au_2^{nm}u_1^mh^{qm} = au_3^mu_2^mu_1^mf^m = au_3^mu_2^mg^{nm} = au_3^mh^{pnm}$$

we get

$$\frac{u_2^{nm}u_1^m a}{h^{pnm}} = \frac{u_3^m a}{h^{qm}} \text{ in } A_{h^{\bullet}}$$

Thus the above diagram is commutative.

Next, we have to prove that

$$\varinjlim_{x \in X_f} A_f \cong A_p.$$

Noting that the following are equivalent

(i)
$$x \in X_f$$
, (ii) $x \in X - V(f)$, (iii) $f \in A - p_x$,

we know that there is the canonical map $A_f \rightarrow A_p$ assigns $\frac{a}{f_n}$ with $\frac{a}{f^n}$. Thus

we have to prove that

i) If $\frac{a}{f} = \frac{b}{g}$ in A_{p} , where $\frac{a}{f} \in A_{f}$ and $\frac{b}{g} \in A_{g}$, then there exists α in A such that $x \in X_{\alpha} \subset X_{f}$, $X_{\alpha} \subset X_{g}$ and $\rho_{\alpha,f}\left(\frac{a}{f}\right) = \rho_{\alpha,g}\left(\frac{b}{\sigma}\right)$ in X_{α} , ii) Conversely, if $\frac{a}{f} \in A_f$ and $\frac{b}{g} \in A_g$ are equal in some A_h such that $x \in X_h \subset A_h$ X_f and $X_{\alpha} \subset X_g$ then $\frac{a}{f} = \frac{b}{\sigma}$ in A_{p} . Proof of i): Note that $\frac{a}{f} = \frac{b}{\sigma}$ in A_{p} , iff there exists $h \in A - p_x$ such that h(ag - bf) = 0There are two maps $\rho_{fgh,f}: A_f \to A_{fgh}$ and $\rho_{fgh,g}: A_g \to A_{fgh}$ such that $\rho_{fgh,f}\left(\frac{a}{f}\right)$ $=\frac{agh}{f\sigma h}$ and $\rho_{fgh,g}\left(\frac{b}{\sigma}\right)=\frac{bfh}{f\sigma h}$, respectively. Since agh=bfh we have $\frac{agh}{f\sigma h}=$ $\frac{bfh}{fgh}$ in A_{fgh} . Put $\alpha = fgh$ then i) has been proved.

Hyung Koo Cha and Dall Sun Yun 246

Proof of ii). From
$$\rho_{h,f}\left(\frac{a}{f}\right) = \rho_{h,g}\left(\frac{b}{g}\right)$$
 we get $\rho_{fgh,f}\left(\frac{a}{f}\right) = \frac{agh}{fgh} = \rho_{fgh,g}\left(\frac{b}{g}\right)$
 $= \frac{bfh}{fgh}$ in A_{fgh} . Thus we have the equation $(fgh)^m (agh-bfh)=0$ i. e. $(fgh)^m$
 $h(ag-bf)=0$. Since f, g and h are in $A-p_x(fgh)^m h$ is also in $A-p_x$ and therefore

$$\frac{a}{f} = \frac{b}{g} \quad \text{in } A_{p_{x}}.$$

THEOREM 2, The presheaf S as above is the sheaf ($\overline{S} \pi$, X) on Spec(A)=X such that for each $x \in X$, $\pi^{-1}(x) = A_p$ and for each open set U of X, $S(U) = \overline{S}(U)$, where $x=p_x$, π the canonical projection and $\overline{S}(U)=$ the set of all sections of \overline{S} over U.

PROOF. We want to prove that for
$$X = \bigcup_{i \in I} X_{f_i}$$
 and $\left\{ \frac{a_i}{f_i} \in A_{f_i} \right\}_{i \in I}$ with $\rho_{f_i f_j}, f_i\left(\frac{a_i}{f_i}\right)$
= $\rho_{f_i f_j}, f_i\left(\frac{a_j}{f_j}\right)$, there exists a unique element a in A such that $\rho_{f_i}, 1(a) = \frac{a_i}{f_i}$ for all $i \in I$ (note: $X = X - V(1) = X_1 \supset X_{f_i}$). In order to do this, it suffices to deal with the cases that f_i has no a_i as a factor for all $i \in I$. Assume f_i is not divisor of a_i , then

$$\frac{a_i f_j}{f_i f_i} = \frac{a_j f_i}{f_i f_i} \quad \text{in } A_{f_i f_j} \quad \text{note} : X_{f_i} \cap X_{f_j} = X_{f_i f_j}.$$

Therefore there is a positive integer $n \ge 1$ such that $(f_i f_j)^n (a_i f_j - a_j f_i) = 0$ and we have $(f_i f_j)^n a'_i f_j = (f_i f_j)^n a_j f_i = 0$, because of $a_i f_j \neq a_j f_i$ except $a_i f_j = 0 = a_j f_i$. This implies that

$$\frac{a_i f_j}{f_i f_j} = \frac{a_j f_i}{f_i f_j} = 0 \text{ in } A_{f_i f_j}.$$

Therefore

$$\frac{a_i f_j}{f_i f_j} = \frac{a_j f_i}{f_i f_j} \neq 0$$

in $A_{f_if_i}$ implies that there exists a unique element a in A such that $a_i = af_i$ for all $i \in I$. For all $i \in I$. $\rho_{f_i} \cdot 1(a) = \frac{af_i}{f_i}$, where $\rho_{f_i,1} \colon A \to A_{f_i}$ and therefore we complete our proof (because the presheaf S satisfies the conditions (S_1) and (S_2) in pages 5-6 of [5]).

Recall that Spec(A) is a discrete topological space (§2). This implies that \overline{S} is

Sheaves on Prime Spectrums of Quasi B-Rings 247

also a discrete topological space, and therefore we have the sheaf isomorphism $\overline{S} \approx \prod_{i \in X} A_{p_i}$ (with the discrete topology) (for details see [5] or [8]). In consequence the sheaf \overline{S} on Spec(A) is *flably*. Let φ be a family of supports on X, and $\Gamma_{\varphi}(U, \overline{F})$ be the set of all sections of a sheaf \overline{F} on U over X, where U is an open set of X. Since each \overline{F} has an injective resolution we can define the cohomology functors of \overline{F} as follows:

 $H_{\omega}^{n}(X, F) = R^{n} \Gamma \varphi(X, F) \quad (n \geq 0)$

where $\{R_n\}_{n\geq 0}$ are the right derived functors of the contravariant functors Γ_{ω} (for

details see [5] or [8]), Using that every flabby sheaf is φ -acyclic for any φ the following is clear (see p.35 of [5]).

THEOREM 3. Let A be a quasi B-ring. There exists a unique sheaf \overline{S} on X =Spec(A) up to isomorphism such that for each open set $U(=X_f \text{ for some } f \in A)$ $\overline{S}(U) \cong A_f$, which is flabby. That is, for any family φ of supports on X $H^0_{\varphi}(X, \overline{S}) \cong \Gamma_{\varphi}(X; \prod_{x \in X} A_p), \quad H^n_{\varphi}(X, \overline{S}) = 0, n > 1$ Moreover, if φ is the set of all closed subsets of X then $H^0_{\varphi}(X; \overline{S}) = H^0(X, \overline{S})$ $\cong \prod_{x \in X} A_p$.

> Hanyang University Seoul, Korea

REFERENCES

- [1] M, F Atiyah and I.G. Macdonald, Introduction to commutative Algebra, Addison-Wealely Publishing Company (1969).
- [2] A. Borel and J.G. Moore, Homology theory for locally compact space, Michigan Math J. 7(1960) pp137-159
- [3] G.E. Bredon, Sheaf Theory. McGraw-Hill Book Company (1967)
- [4] R. Peheuval, Homologie des ensembles ordonn'es et des capaces topogiques. Bull, Soc.
 Math de France, 90(1962) pp. 261-321.
- [5] J.W. Gray, Sheaves with values in a category, Topology, 3(1964) pp. 1-18.
- [6] J.L. Kelley, General Topology, Van Nostrand Company Inc. (1965)
- [7] H. Matsumura, Commutative Algebra, W.A. Benjamin Inc. (1970).
- [8] R.G. Swan, The theory of Sheaves, the University of Chicago Press. (1964)