Kyungpook Math. J.
Volume 13, Number 2
December, 1973

STRICT INCLUSION $O_{H B}<O_{H D}$ FOR ALL DIMENSIONS

By Young K. Kwon

Let M be a Riemannian n-manifold ($n \geq 2$) and $H X(M)$ the real vector space of X-harmonic functions on M. Here X stands for $B=$ bounded, $D=$ Dirichletfinite, or $B D=$ bounded and Dirichlet-finite. A Riemannian manifold M belongs to the null class $O_{H X}$, by definition, if the class $H X(M)$ reduces to the real number field.

The purpose of the present paper is to show that the inclusion relation $O_{H B} \subset O_{H D}$ is strict for all $n \geq 3$. The result was announced in Kwon [3].

1. A real-valued C^{2}-function u on a Riemannian n-manifold M is said to be harmonic on M if it satisfies $\Delta u=0$, where

$$
\Delta u=-\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}}\right)
$$

is the Laplace-Beltrami operator for M. Here $\left(g_{i j}\right)$ is the Riemannian metric tensor for $M,\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$, and $g=\operatorname{det}\left(g_{i j}\right)$. The Dirichlet integral of a C^{1}-function u on M is defined by

$$
D(u)=\int_{M} \sum_{i, j=1}^{n} g^{i j} \frac{\partial u}{\partial x^{i}} \frac{\partial u}{\partial x^{j}} d V
$$

where $d V=\sqrt{g} d x^{1} \wedge d x^{2} \wedge \cdots \cdots \wedge d x^{n}$ is the volume element.
One of the important open problems in the classification theory is to determine whether or not the inclusion

$$
O_{H B} \subset O_{H D}
$$

is strict (cf. Sario-Nakai [5, p. 406]). The problem was raised in 1950 from the Virtanen identity

$$
O_{H D}=O_{H B D}\left(\supset O_{H B}\right)
$$

(Virtanen [71]). In 1953 Tôki [6] constructed a Riemann surface for the strictness when $n=2$, which bears his name. We shall follow a simpler construction by Sario [4].

In the present paper we shall construct a Riemannian n-manifold $N(n \geq 3)$ such that $\operatorname{dim} H B(N)=2$ and $\operatorname{dim} H D(N)=1$. Thus the inclusion $O_{H B} \subset O_{H D}$ is strict for all $n \geq 2$.
2. Let $n \geq 3$. Denote by M_{0} the punctured Euclidean n-space $R^{n}-0$ with the Riemannian structure

$$
g_{i j}(x)=|x|^{-4}\left(1+|x|^{n-2}\right)^{\frac{4}{n-2}} \delta_{i j}, \quad 1 \leq i, j \leq n
$$

where $|x|=\left[\sum_{i=1}^{n}\left(x^{i}\right)^{2}\right]^{\frac{1}{2}}$ for $x=\left(x^{1}, x^{2}, \cdots \cdots, x^{n}\right) \in M_{0}$.
First we observe
LEMMA 1. A function $u(x)$ on M_{0} is harmonic if and only if $\left(1+|x|^{2-n}\right) u(x)$ is harmonic on $R^{n}-0$. In particular a positive harmonic function u on M_{0} has the form:

$$
u(x)=a+\frac{b}{1+|x|^{n-2}}
$$

for some constants a, b.
Proof. From

$$
g^{i j}(x)=|x|^{4}\left(1+|x|^{n-2}\right)^{-\frac{4}{n-2}} \delta_{i j}, \quad g=|x|^{-4 n}\left(1+|x|^{n-2}\right) \frac{4 n}{n-2}
$$

it follows that

$$
\begin{aligned}
\Delta u & =-\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}}\right) \\
& =-|x|^{4}\left(1+|x|^{n-2}\right)^{-\frac{4}{n-2}} \cdot\left[\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x^{i^{2}}}-\frac{2 n-4}{|x|^{2}\left(1+|x|^{n-2}\right)} \sum_{i=1}^{n} x^{i} \frac{\partial u}{\partial x^{i}}\right] \\
& =|x|^{n+2}\left(1+|x|^{n-2}\right)^{-\frac{n+2}{n-2}} \cdot \Delta_{e}\left[\left(1+|x|^{2-n}\right) u\right],
\end{aligned}
$$

where

$$
\Delta_{e} v=-\sum_{i=1}^{n} \frac{\partial^{2} v}{\partial x^{i^{2}}}
$$

is the Laplace-Beltrami operator for $R^{n}-0$. This establishes the first half.
For the second half let u be a positive harmonic function on M. Then by virtue of Bôcher's theorem (cf., e.g., Helms [2, p.81]), there exists a constant $b \geq 0$ such that the function

$$
\left(1+|x|^{2-n}\right) u(x)-b|x|^{2-n}
$$

is harmonic on R^{n}. Since R^{n} carries no nonconstant positive harmonic functions and

$$
\lim _{|x| \rightarrow \infty}\left[\left(1+|x|^{2-n}\right) u(x)-b|x|^{2-n}\right] \geq 0
$$

the desired conclusion follows.
3. For each pair (m, l) of positive integers, m, l, set $k=2^{m-1}(2 l-1)-1$. Consider the pair of closed hemispheres

$$
\begin{aligned}
& H_{m l}=\left\{8^{k} x \in M_{o}| | x \mid=1 \text { and } x^{1} \geq 0\right\} \\
& H_{m l}^{\prime}=\left\{8^{-k} x \in M_{O}| | x \mid=1 \text { and } x^{1} \geq 0\right\}
\end{aligned}
$$

where for $a>0$ and $x=\left(x^{1}, x^{2}, \cdots, x^{n}\right) \in M_{0}$, we write $a x=\left(a x^{1}, a x^{2}, \cdots, a x^{n}\right)$.
Denote by M_{0}^{\prime} the slit manifold obtained from M_{0} by deleting all the hemispheres $H_{m l}$ and $H_{m l}^{\prime}(m, l \geq 1)$.
Take a sequence $\left\{M_{0}{ }^{\prime}(l)\right\}_{1}^{\infty}$ of duplicates of the manifold $M_{0}{ }^{\prime}$. For each fixed $m \geq 1$ and subsequently for fixed $j \geq 0$ and $1 \leq i \leq 2^{m-1}$, connect $M_{0}{ }^{\prime}\left(i+2^{m} j\right)$ with $M_{0}{ }^{\prime}\left(i+2^{m-1}+2^{m} j\right)$ crosswise along all the hemispheres $H_{m l}$ and $H_{m l}{ }^{\prime}(\geq 1)$. The resulting Riemannian n-manifold N is an infinitely sheeted covering manifold of M_{0} 。

We are now ready to state our main result:
THEOREM. The Riemannian n-manifold $N(n \geq 3)$ carries nonconstant bounded harmonic functions but no nonconstant Dirichlet-finite harmonic functions.

The proof will be given in 4-5.
4. Let M be the 2 -sheeted covering manifold of M_{0} obtained by joining, crosswise, two copies of $M_{0}{ }^{\prime}$ along all the hemispheres $H_{m l}$ and $H^{\prime}{ }_{m l}(m, l \geq 1)$. For each $k=2^{m-1}(2 l-1)-1$, denote by U_{k}, U_{-k} the open sets of M which lie over the open annuli $\left\{x \in M_{0}\left|2^{3 k-1}<|x|<2^{3 k+1}\right\}, \quad\left\{x \in M_{0}\left|2^{-3 k-1}<|x|<2^{-3 k+1}\right\}\right.\right.$, respectively. Also let S_{k}, S_{-k} lie over the spheres $\left\{x \in M_{0}| | x \mid=2^{3 k}\right\}, \quad\left\{x \in M_{0}| | x \mid=2^{-3 k}\right\}$ respectively. Clearly S_{k} is a compact subset of U_{k}, and S_{-k} a compact subset of U_{-k} for all $k=2^{m-1}(2 l-1)-1$.
For the families
$H_{1}\left(U_{k} ; S_{k}\right)=\left\{u \mid u\right.$ harmonic on U_{k} with $|u| \leq 1 ; u$ changes sign on $\left.S_{k}\right\}, H_{1}\left(U_{-k}\right.$; $\left.S_{-k}\right)=\left\{u \mid u\right.$ harmonic on U_{-k} with $|u| \leq 1 ; u$ changes sign on $\left.S_{-k}\right\}$, define $\quad q_{k}=\inf \left\{q \| u(x) \mid \leq q\right.$ for all $x \in S_{k}$ and $\left.u \in H_{1}\left(U_{k} ; S_{k}\right)\right\}$, $q_{-k}=\inf \left\{q| | u(x) \mid \leq q\right.$ for all $x \in S_{-k}$ and $\left.u \in H_{1}\left(U_{-k} ; S_{-k}\right)\right\}$.
It is known that $0<q_{k}, q_{-k}<1$ for all $k=2^{m-1}(2 l-1)-1$ (cf., e.g., Ahlfors-

Sario [1, p. 154]).
LEMMA 2. There exists a positive constant $q<1$ such that $q \geq q_{k}, q_{-k}$ for all $k=2^{m-1}(2 l-1)-1$.

PROOF. Let $u \in H_{1}\left(U_{k} ; S_{k}\right), k=2^{n-1}(2 l-1)-1$. By Lemma 1 the function ($1+$ $\left.|x|^{2-n}\right) u(x)$ is Δ_{e}-harmonic (harmonic with respect to the Euclidean structure) on $U_{k^{*}}$ Since the Δ_{e}-harmonicity is invariant by the magnification $x=\left(x^{1}, \cdots, x^{n}\right) \rightarrow 8^{k} x=$ $\left(8^{k} x^{1}, \cdots, 8^{k} x^{n}\right),\left(1+8^{k(2-n)}|x|^{2-n}\right) u\left(8^{k} x\right)$ is Δ_{e}-harmonic on U_{0}. Therefore

$$
\left(1+8^{k(2-n)}\right) \max \left\{|u(y)| \mid y \in S_{k}\right\} \leq q_{0}^{\prime}\left(1+8^{k(2-n)} \cdot 2^{n-2}\right)
$$

where $q_{0}{ }^{\prime}$ is a positive constant with $q_{0}{ }^{\prime}<1$ such that

$$
\max \left\{\mid v(x) \| x \in S_{0}\right\} \leq q_{0}^{\prime}
$$

for every Δ_{e}-harmonic function v on U_{0} with $|v| \leq 1$ which changes sign on S_{0}. Taking the supremum over u and then letting $k \rightarrow \infty$, we conclude that

$$
\limsup _{k \rightarrow \infty} q_{k} \leq q_{0}^{\prime}
$$

For the estimate of q_{-k} for large k, consider $u \in H_{1}\left(U_{-k} ; S_{-k}\right)$. As above the function $\left(1+|x|^{2-n}\right) u(x)$ is Δ_{e}-harmonic on U_{-k}. In view of the fact that the Δ_{e} -harmonicity is invariant by the Kelvin transformation, for $\rho=8^{-\frac{k}{2}}$ the function

$$
\frac{\rho^{n-2}}{|x|^{n-2}}\left(1+\rho^{2(2-n)}|x|^{n-2}\right) u\left(\frac{\rho^{2}}{|x|^{2}} x\right)
$$

is Δ_{e}-harmonic on U_{0}. Therefore

$$
\lim _{k \rightarrow \infty} q_{-k} \leq q_{0}^{\prime}
$$

and this completes the proof of Lemma 2.
5. The first half of our theorem is obvious, since the base manifold M_{0} carries a nonconstant bounded harmonic function by Lemma 1.
For the second half we shall show that every bounded harmonic function u on N takes the same value at all points in N which lie over the same point of M_{0}. Then the function u has a finite Dirichlet integral over N onlo when u is a constant.

For each $k=2^{m-1}(2 l-1)-1$, consider the open sets v_{k}, v_{-k} of N which lie over the annuli $\left\{x \in M_{0}\left|2^{3 k-1}<|x|<2^{3 k+1}\right\},\left\{x \in M_{0}\left|2^{-3 k-1}<|x|<2^{-3 k+1}\right\}\right.\right.$ respectively
and the sets $T_{k}\left(\subset V_{k}\right), T_{-k}\left(\subset V_{-k}\right)$ over the spheres $\left\{x \in M_{0}| | x \mid=2^{3 k}\right\}, \quad\{x \in$ $\left.M_{0}| | x \mid=2^{-3 k}\right\}$ respectively. Each component C of V_{k} (or V_{-k}) is a duplicate of: U_{k} (or U_{-k}) with $C \cap T_{k}=S_{k}$ (or $C \cap T_{-k}=S_{-k}$). Therefore the conclusion of Lemma 2 with the same $q<1$ is applicable in the present situation:

$$
\max \left\{\|v(x)\| x \in T_{k}\right\} \leq q
$$

for all $v \in H_{1}\left(V_{k} ; T_{k}\right)$, and this property is true for T_{-k} and V_{-k}. Here we understand that every $v \in H_{1}\left(V_{k} ; T_{k}\right)$ (or $H_{1}\left(V_{-k} ; T_{-k}\right)$) is required to change sign on each component of T_{k} (or T_{-k}).

Let u be a bounded harmonic function on N with $|u| \leq 1$. For each $m \geq 1$, denote by π_{m} the cover transformation of N which interchanges the sheets of N : points in $M_{0}^{\prime}\left(i+2^{m} j\right)$ are interchanged with points, with the same projection, $M_{0}^{\prime}\left(i+2^{m-1}+2^{m} j\right)$ for $j \geq 0$ and $1 \leq i \leq 2^{m-1}$. Define v_{m} on N by

$$
v_{m}(x)=\frac{1}{2}\left[u(x)-u\left(\pi_{m}(x)\right)\right]
$$

Clearly v_{m} is harmonic on $N,\left|v_{m}\right| \leq 1$, and v_{m} changes sign on each component of T_{k} and $T_{-k}\left(k=2^{m-1}(2 l-1)-1\right.$ and $\left.l \geq 1\right)$. Therefore

$$
\max \left\{\left|v_{m}(x)\right| \mid x \in T_{k} \cup T_{-k}\right\} \leq q
$$

for all $l \geq 1$. Since $q^{-1} v_{m} \in H_{1}\left(V_{k^{\prime}} ; T_{k^{\prime}}\right) \cap H_{1}\left(V_{-k^{\prime}} ; T_{-k^{\prime}}\right)$ with $k^{\prime}=2^{m-1}(2 l-3)$ $-1,\left|v_{m}\right| \leq q^{2}$ on $T_{k^{\prime}} \cup T_{-k^{\prime}}$. By induction on l, we conclude that $\left|v_{m}\right| \leq q^{l}$ on $T_{k^{\prime}} \cup T_{-k^{\prime \prime}}$, where $k^{\prime \prime}=2^{m-1}-1$. Letting $l \rightarrow \infty,\left|v_{m}\right| \equiv 0$ on N, as desired. Therefore

$$
u(x)=u\left(\pi_{m}(x)\right)
$$

on N for all $m \geq 1$, and u attains the same value at all the points in N which: lie over the same point in M_{0}.

COROLLARY. (1) $\operatorname{dim} H B(N)=2$,
(2) $\operatorname{dim} H D(N)=1$.

REFERENCES

[1] Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, 1960. 382 pp.
[2] L. Helms, Introduction to potential theory, Wiley-Interscience, 1969. 282 pp .
[3] Y.K. Kwon, Bounded harmonic but no Dirichlet-finite harmonic, Bull. Amer. Math. Soc. 79 (1973), 491-492.
[4] L. Sario, Positive harmonic functions, Lectures on functions of a complex variable, pp. 245-256, Univ. Michigan Press, 1955.
[5] L. Sario and M. Nakai, Classification theory of Riemann surfaces. Springer, 1970. 446 pp.
[6] Y. Tôki, On the examples in the classification of open Riemann surfaces, Osaka Math. J. 5(1953), 267-280.
[7] K. Virtanen, Uber die Existenz von beschränkten harmonischen Funktionen auf offenen Riemannschen Flächen. Ann. Acad. Sci. Fenn. Ser. A. I. 75(1950), 8 pp.

