Kyungpook Math. J.
Volume13, Number 2
December, 1973

INTEGRABILITY CONDITIONS OF AN ALMOST CONTACT MANIFOLD

By R.S. Mishra

1. Introduction.

Let V_{n} be an n-dimensional differentiable manifold. Let there be defined in V_{n}, a C^{∞} vector valued linear function F, a vector field T and a 1 -form A satisfying
(1.1) a

$$
\bar{X}+X=A(X) T,
$$

for an arbitrary vector field X, where

$$
\begin{equation*}
\bar{X} \stackrel{\text { def }}{=} F(X) . \tag{1.1}
\end{equation*}
$$

Then V_{n} is called an almost contact manifold. It can be easily proved that
(1.3)
(1.4)
(1.5)
(1.6)

n is odd dimensional $=2 m+1$

rank $(F)=2 m$,
$\bar{T}=0$,
$A(T)=1$,
$A(\bar{X})=0$,
for an arbitrary vector field X.
Agreement (1.1). In the preceeding and in what follows the equations containingX, Y, Z, U etc. hold for arbitrary vector fields X, Y, Z, \dot{U}.

Let there be defined in V_{n} a metric tensor g satisfying
(1.7) $\quad g(\bar{X}, \bar{Y})=g(X, Y)-A(X) A(Y)$.

Then the almost contact manifold V_{n} is called an almost Grayan manifold.
Let us put in the almost Grayan manifold V_{n}

$$
\begin{equation*}
F(X, Y)=g(\bar{X}, Y) \tag{1.8}
\end{equation*}
$$

Then ' F is skew symmetric:
(1.9) a

$$
' F(X, Y)++^{\prime} F(Y, X)=0
$$

and
(1.9) b $\quad{ }^{\prime} F(\bar{X}, \bar{Y})={ }^{\prime} F(X, Y)$.

If in the almost Grayan manifold V_{n}.
(1.10) a $\quad{ }^{\prime} F=d A$.

Then V_{n} is called an almost Sasakian manifold. Thus for an almost Sasakian manifold
(1.10) b

$$
' F(X, Y)=(d A)(X, Y)
$$

equivalent to

$$
(1.10) \mathrm{c}
$$

$$
' F(X, Y)=\left(D_{X} A\right)(Y)-\left(D_{Y} A\right)(X)
$$

where D is a symmetric connexion.
It is easy to see that for an almost Sasakian manifold

$$
\begin{equation*}
\left(D_{X}^{\prime} F\right)(Y, Z)+\left(D_{Y}^{\prime} F\right)(Z, X)+\left(D_{Z}^{\prime} F\right)(X, Y)=0 . \tag{1.11}
\end{equation*}
$$

Nijenhuis tensor N is given by

$$
N(X, Y)=[\bar{X}, \bar{Y}]+\overline{[\overline{X, Y]}}-\overline{[\bar{X}, Y]}-\overline{[X, \bar{Y}]} .
$$

An almost contact manifold for which

$$
\begin{equation*}
N(X, Y)+(d A)(X, Y) T=0 \tag{1.12}
\end{equation*}
$$

holds is called an almost contact normal manifold.
Let us put
(1.13)

$$
\begin{align*}
& l(X) \underset{\text { def }}{\stackrel{\text { def }}{=}} X-A(X) T \\
& m(X) \stackrel{=}{=} A(X) T \tag{1.14}
\end{align*}
$$

'Then

$$
\begin{equation*}
X=l(X)+m(X) . \tag{1.15}
\end{equation*}
$$

It can be proved easily that
(1.16) a
(1.16) b
$\overline{l(X)}=l(\bar{X})=\bar{X}$,
(1.17)
(1.18)
(1.20)
(1.21)
$\overline{\overline{l(X})}=l(\bar{X})=-l(X)$,
$m(\bar{X})=\overline{m(X)}=0$,
$l(m(X))=m(l(X))=0$,
$l^{2}(X) \stackrel{\text { def }}{=} l(l(X))=l(X)$,
$m^{2}(X)=m(X)$
$l(T)=0, \quad m(T)=T$.

The operators l and m applied to the tangent space at each point of the manifold are complementary projection operators. Thus there exist in the manifold two complementary distributions $\mathbb{I}_{2 m}$ and \mathbb{I}_{1} corresponding to l and m respectively. $\mathbb{I}_{2 m}$ is $2 m$-dimensional and \mathbb{I}_{1} is 1 -dimensional.

2. Integrability conditions.

THEOREM (2.1). The distribution \mathbb{I}_{1} is integrable.
Proof. The distribution \mathbb{I}_{1} is given by
(2.1) a) $X=m(X)$,
b) $l(X)=0$.

In order that \mathbb{I}_{1} is integrable, it is necessary and sufficient that

$$
\begin{equation*}
(d l)(X, Y)=0 \tag{2.2}
\end{equation*}
$$

be satisfied by (2.1)a. Thus we have

$$
(2.3) \quad(d l)(m(X), m(Y))=0
$$

In consequence of (1.18), this equation is equivalent to

$$
\begin{equation*}
l([m(X), m(Y)])=0 \tag{2.4}
\end{equation*}
$$

In consequence of (1.13) and (1.14) this equation is automatically satisfied. Hence we have the statement.

THEOREM (2.2). The necessary and sufficient condition that $\mathbb{I}_{2 m}$ be integrable is: (2.5) a

$$
A(X)(d A)(T, Y)-A(Y)(d A)(T, X)=(d A)(X, Y),
$$

equivalent to
(2.5) b

$$
(d A)(\bar{X}, \bar{Y})=0 .
$$

PROOF. The distribution $\mathbb{I}_{2 m}$ is given by
(2.6) a) $X=l(X)$,
b) $m(X)=0$,

In order that $\mathbb{I}_{2 m}$ is integrable it is necessary and sufficient that

$$
(d m)(X, Y)=0
$$

be satisfied by (2.6)a. Hence, we have

$$
(d m)(l(X), l(Y))=0
$$

In consequence of (1.18), this equation is equivalent to

$$
m([l(X), l(Y)])=0
$$

With the help of (1.13) and (1.14) this equation takes the form

$$
\begin{gathered}
A(X)\{T(A(Y))-A([T, Y])\}-A(Y)\{T(A(X))-A([T, X])\} \\
=X(A(Y))-Y(A(X))-A([X, Y])
\end{gathered}
$$

which is the equation (2.5)a.
Barring X, Y in (2.5)a and using (1.6), we get (2.5)b.
COROLLARY (2.1). The equation (2.5)b is also equivalent to

$$
\begin{equation*}
A(N(X, Y))=0 \tag{2.5}
\end{equation*}
$$

or
(2.5) d

$$
A(N(\bar{X}, \bar{Y}))=0
$$

or
(2.5) e

$$
A(N(\bar{X}, Y))=0
$$

PROOF. In consequence of (1.6), the equation (2.5)b is equivalent to (2.5) f

$$
A([\bar{X}, \bar{Y}])=0,
$$

which, by virtue of the definition of N is the same as (2.5)c. Barring X and Y
in (2.5)c, we get (2.5)d. Barring X and Y in (2.5)d, we get (2.5)c. We similarly obtain (2.5)e. Barring X in (2.5)e we get (2.5)c. Hence (2.5)c, d, e are equivalent.

THEOREM (2.3). Necessary and sufficient condition that V_{n} be integrable is (2.5).
PROOF. The statement follows from Theos. (2.1) and (2.2) and Cor. (2.1).
COROLLARY (2.2). If an almost contact manifold V_{n} is integrable $(d A)(X, Z)(d A)(T, Y)=(d A)(Y, Z)(d A)(T, X)$.

PROOF. The equation follows from (2.5)a, by using the fact that $d^{2}=0$.
THEOREM (2.4). The necessary and sufficient condition that an almost contact normal manifold be integrable is
(2.7) a $\quad N(X, Y)=A(X) N(T, Y)-A(Y) N(T, X)$,
equivalent to
(2.7) b

$$
N(\bar{X}, \bar{Y})=0
$$

or
(2.7) c $\quad N(X, \bar{Y})=A(X) N(T, \bar{Y})$.

PROOF. Substituting from (1.12) in (2.5)a, b we obtain (2.7)a, b. Barring Y in (2.7)a and using (1.6), we obtain (2.7)c.

THEOREM (2.5). An almost Sasakian manifold cannot be integrable.
Proof. Substituting from (1.10)b in (2.5)a, and using ' $F(T, Y)=0$, we get

$$
' F=0,
$$

equivalent to

$$
F=0
$$

which proves the statement.

