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THE FINITE SQUARE SEMI-UNIFORMITY
By Norman Levine

1. Introduction. \
Let (X, ) be a topological space and define &(F") to be {S:S=0,x0,U0,

X0, where 0; €7 and X=0,U0,;} and let Z(7) be the semi-uniformity

for X generated by &(.7 ) as subbase. {
In this paper an attempt is made to get relationships between .7~ and Z'(.9 ).

I (Z (7)) will denote {0* : x € O* implies that there exists a =4 (9 ) such
that U [x] C 0%}. ’

THEOREM 1.1 J (Z(J ))C S . |

PROOF. Letx€ 0¥ (Z' (9 )). There exists then a U&Z'(.9") such that U [x]
CO*. But UDS,N---QS, where S;&8(J ). Thus 2&S; [x1 () S,, [x] CU [x] CO*

and each S.[xj]& 7. Thus O*€ 5.

In theorem 3.1, a necessary and sufficient condition is given for 9 =9 (¥

(ZF).
Let Z(5 )={B" B=0,%x0,U--U0, X0, where 0,&€5 and X=0,U--U0,}.

THEOREM 1.2 Z(J) is a base for Z (T ).

PROOF. We first show that Z(J )CZ(J ). Let X=0,U---UO0,, 0,5 . For
each cC{l, -+, n}, let Go=U{0,:i€E0}. Then 0,X0,U--U0,X0,DNI{GoXGo
UGy, XGg, 0C{l, -, ®}}E€Z(5 ). Thus 0,X0; U--UO,X0,EZ (7). Let
X=0,UU, 1<i<n, where O0,&.5 and U,e5 . For each ¢C{l, -, n}, let
Go=N1{0;:ico} and Ho=N{U;:i€o}. Then N{0;X0;UU;XU;:1<i<n} D
(GoNHooXGoNHos : 0C{1, -, n&F(7 ). Hence F(F ) has the base
property.

COROLLARY 1.3 A& (9) iff (X, ) is finitte and discrete, 4 denoling the
diagonal tn XXX.

PROOF. If (X.- J ) is finite and discrete, then 4d=U{{x} X {z} : 2&cX}cF (T ).
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Conversely, let 4€%(.9 ). Then 4D0,X0U--U0, X0, where O, €9 and
X=U{0,:1<;<#u}. Then each O, is a singleton or 1s empty. Thus X is finite

and .9 is discrete.

THEOREM 1.4 A topology I is a chain (linearly ordered by tnclusion) iff Z
(YN )={Y XY} for all YCX. |

- PROOF. Let be .9 a chain and suppose hat YCX. Suppose further that ¥ =
(YﬂOl)U(YﬂOZ) with O, €9 . We may assume that 0,C0,. It follows then

that (0;NY)X(0;NYIU0,NYIX(0,NY)=Y XY and hence Z(¥ NI )= {¥ XY}

Conversely, suppose that Z (Y (N9 )={Y XY} {for all YCX. If 9 is not a
chain, there exist O, in .9 such that 0,0, and 0,0 ; let Y=0,U0,. Then O,

€Y NS, but 0;X0,U0,X0,#Y XY and hence Z(YN.9 )< {Y XY}, a contradict-
ion. . R |

THEOREM 1.5 Z (5 )={XXX} iff X=0,U0,, O, &7 implies that X=0, or
X=0,

PROOF. Suppose that Z(9)={XxX} and that X=0,U0,, 0,£5. If 0#X
for =1, 2, then O,X0;U0,X0,€Z(J ), but O;X0;U0,X0,#2XXX.

The converse is clear.

THEOREM 1.6 (X, 7 ) is connected iff XXX 1is the only equivalence relation
in Z (T ).

PROOF. If (X, .97) is not connected, there exist O,;, O, disjoint, nonempty open
sets such that X=0,U0,. Then 0,X0,U0,X0, is an equivalence relation in Z'(.7 )
which is different from XX X.

Conversely, suppose £ 1s an eguivalence relation in Z(.9 ) which is different
from XX X. By theorem 1.2, there exist open sets O, 1=:<# such that X=0,
U---U0, and £20,X0,U---U0,X0,. Take 2&X ; let A=U {0, : O;NE [x] #¢} and
let B=U{0, : O,NE[x] =¢}. Note firstly that if O;NE[x]5g, then O,NE[x]. To
see this, let y&€O,NE[x]. Then E[:.!:]=E[J?]D(01X01U--~UO”><OH) [y1D0,. 1t
follows then that p#ACE [x] and A is open. Hence ¢0#B& .9 and ANB=¢, X=
AUB. Thus (X, 9 ) is disconnected.

“.F

THEOREM 1.7 Let (X, 9) be a topological space and YCX. Then (1) Y XY
NZ(THCZ XY NT ) and (ii) if Y is closed, then equalily holds.
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PROOF. (i) Let UEZ(.97) : by theorem 1.2, UD0,;X0,U---U O, X0, where O,
€9 and X=0,U--UO,. Then Y XY NUDY NODXYNOPU---UFNO)DXTN
0) and YXYNUZ(YNZ ). (1) Let ¥ be closed and suppose Y=(Y|"101)U(Y
NO0,) where O, €5 . Then (YQOI)X(YﬂOl)U(Yﬂoz)X(YﬂOz)DYXYﬂ(OIX 0,
U0, X0, EYXEYISY XY NZ (T ).

2. Separation Properties.

THEOREM 2.1 (X, F) is a T-space iff NZ (I )=A4.

PROOF. Suppose that (X, ) is a T,-space and z#>y. Then (x, )&% {x} X
R UZ (0 XF €T HC(I) and 4=N¥(IT).

Conversely, suppose that A=NZ'(.9 ). We will show that ¥ {x}&.9" for each
x. Let y=% {x} ; then x3%y and hence there exist open sets O; such that X=0,
UO, and (x, y)€0,X0;U0,X O,. If x€0,, then y&0, and y€0,C% {x} ; if xE£0,,
then x€0,, and y&0,and y<E0,CF {x}.

A space (X, J ) is called a T, s~space iff x7y implies that there exist open

sets Oy and O, such that x&0,, y&0, and c(0,)Nc(0,)=9, c denoting the closure
operator. |

THEOREM 2.2 A space (X, 97) is a T, ~space iff 4=N{cU :UEZ (I},

PROOF. Suppose that (X, 9) is a T, .~space and x#y. There exist then open
sets O, and O, such that x€0,, y&0, and cO;NcO,=¢. Then X=%"cO,U%cO,,
but (x, y)%c%”cOIXc%’cOl Uc%cO, % c%”"cO2 since y%c%”'coz and x&cﬁ"’_cOl. Thus
(z, EN{U 1 UEeZ (5 )}.

Conversely, suppose that 4=N{cU : UE€Z'(9 )} and x#y. Then (x, y)&cU for
some UEZ (.7 ). Then by theorem 2.1, UD0,X0,U---U 0,X0, where 0.5
and X-:OIU---UOH. Hence -(x, y)EAXBCZUCZ(0,X0, U---UO X0, )C¥ 4

where 4 and B are in .9 . Then cAXcBC% 4 and hence cANcB=4. It follows
then that (X, 9 ) is a T, --space.

THECREM 2.3 A space (X,, T ) is normal iff {cU:UEZ(F )} is a base for
2 (.7 ). |

PROOF Let (X, 97) be normal and suppose that VEZ(.7 ). Then VI0,X0,

U---U0, X0, where O, €9 and X=0,U--UO0,. Since (X, 9 ) is normal,
there exist open sets O -+, O % which cover X and cO*CO,. Thus letting U=
0,*X0*U---U0 *X0,X, it follows that VOcU and UEZ(F7).
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Conversely, let {U : U (.9 )} be a base for Z(.9 ). To show that (X, )
is normal, let X=0,U0, where O; €. It suffices to find closed sets £, and
E, which cover X and for which E,CO,, Now 0,X0,U0,X0,€% (5 ) and
hence contamns cO,*Xc0,*U---UcC *Xc0O,* for some open cover O,*, ---, O * of
X. It is clear that cO¥*XcOXCO0,X0, or cO*XcO*C0,X0, for each i. Let E,
=U{cO* : cO;*Xc0,;*C0,X0,} and E,=U{cO*: cO*XcO*C0,X0,}. It is clear
that £, and £, are the required sets.

3. R,-spaces.
A space (X, 7 ) is called an R,-space iff x€0&7 implies that c(x)CO.

THEOREM 3.1 A space (X, 9 ) is an Ry-space iff T (¥ (T ))=7.

PROOF. Suppose that (X, J ) is an R, space. By theorem 1.1, it suffices to
show that  C I (Z (I )):let x&0&€.9 . Then c(x)CO and X=0U%c(x).
Hence OXOUZc(x)XEc(x)eZ (7 ) and (OXOUZc(x)XZ%c(x))[x] =0.

Conversely, suppose that 5 =5 (Z (.9 )) and let x&€0&.9 . Let ye&c(x) ;s we
will show that y&0. There exists a U€Z'(.9 ) such that Uix] CO. By theorem

1.2, there exists a symmetric open set G which contains the diagonal and 1s

contained in U. Then Gly] is open and hence G{y] N {x}#¢. Thus y&G[x]C
Ulx] CO.

THEOREM 3.2 Suppose that F; and 75 are topologies for X. Then (1) if
I C %, then Z(F)C#(F5) and (2) if F7 is Ry and Z (I )C#% (5 ), then
T C 5.

PROOF. (1) is clear. (2) Let x€0& 47. Then ¢,(x)CO, c, denoting the closure
operator relative to 77. Then OXOU%c (x)X¥c (x)EZ (I )CZ (% ). Hence
there exists a GEH X F, such that OXOUZc,(x)X€c;(x)DGD4. Thus 0=
(OXO0U%c,(x)X¥ ¢,(x)) (x] DG [x] D {x}. But G ] &7, and x&G [x] CO. It follows
then that O .7 ..

COROLLARY 3.3 Let 9; and 9 be Ry-topologies for X. Then Ji =95 iff
Z(I)=%(%).

THEOREM 3.4 Let (X, 9°) be an Ry-space. Then I =19, X} iff #(I )=
(XX X}.

PROOF. If 9 ={f, X}, then clearly Z(5 )= {XXX]}.
Conversely, suppose that Z(7 )={XXX} and that ¢#0ET :let z&X. It
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follows then that XXX=0XOU¥%c(x)X¥%c(x) and hence X=(0XOUZc(x)X
Cc(x)) [x] =0.

4. Countability.

THEOREM 4.1 Z(.9") has a countable base if (X, ) is compact and second

axtom.
J

PROOF. Let {0, :¢€P} be a countable base for .7~ and suppose that X=0UG,
o9, GEI . Then X =U{0; : 0;,CO or O,CG} and since (X, ) is compact,
there exist Oz-j, 1<7<#z such that X '—“U{Oz', : 1<7<m} and O,;jCO or OiICG.
Hence OXOUGXGDU {0; X0; 1 1<j<n}D4. Thus {U{0;X0;:i&P*CP, P*
finite, X=U{O, :7&P*}}} is a countable base for Z(.9 ).

THEOREM 4.2 (X, 9 ) is a second axiom space if Z' (T ) has a countable base
and (X, J ) is an Ry-space.

PROOF. Let {U,:7i&P} be a countable base for Z(9"). By theorem 1.2, for '
each integer 7, there exist open sets 0; 1< 7<n. such that U;::U {Oj-x O;:: 1<7
<n}2DA4. Then {O;: 1 1<</<m,, {€P} is a countable base for 7. To see this, let
x&0&.5 . Then for some integer 7, OXOUZc(x)XEc(x)D U, DU {0})( Oj— 1< 7<

n}. Then x€0; for some j and *&0;CO.

5. Z(9 ) a uniformity generated by equivalence relations.

LEMMA 5.1 Suppose that A XA U--UA4A XA EZ (T ), AiﬂAj-—-QS when i#£j
and that X=A;\U---UA,. Then each A, is open and closed.

PROOF. It suffices to show that each 4; is open. By theorem 1.2, A;XA,U--
UA,X4,00,X0,U---U0,X0,D4 where O;E5 . Let 1 EA,. Then x€0; for
some 7. Thus A;=(A;XA4;U--UA XA4) [x]D(OjXOj) (] =0.D {x}.

“An equivalence relation £ on a set X 1s termed of finite character iff {E'[x] :
x&EX} is finite.

THEOREM 5.2 Z' (7 ) has a base of equivalence relations of finite character
iff for each closed set E and each open set O for which ECO, there exists a clopen
set C such that ECCCO. '

PROOF. Sufficiency. Let X=0,U0,, O; being open. Then &0,CO, and hence
¢0,CCCO, for some clopen set C. Hence OIXOIUOzxozDCXCU%’CX?CE?
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(7). It follows then that each UEZ' (.7 ) contains a finite intersection of sets
of the form CXCUZCXZC. Such finite intersections are equivalence relations

of finite character.

Necessity. Let ECO, E being closed and O being open. Then OXOUZF E X
CTEEZ (.7 ) and hence OXOUFZEXEEDA XA U---U4 XA, where AiﬁAjﬁé
when 774/ and 4;XA,U--UA XA €Z(F ). By lemma 5.1, each 4; is clopen.
Let O*=U{4;: A.CO}. O* is clearly clopen; it suffices to show that ECO*. Let
x€E : then x€A; for some ¢. It suffices to show that A,CO. Suppose A.ZO:
take a€A4;—0. Then (x, a)EAXACOXOUTEXTE. But (x, a)OX0OUTE
X% E, a contradiction.

COROLLARY 5.3 Let (X, 9 ) be compact and zero dimensional. Then Z (7 )
has a base of equivalence relaiions of finite characier.

The Ohio State University
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