Kyungpook Math. J. Volume 13, Number 2 December, 1973

THE FINITE SQUARE SEMI-UNIFORMITY

By Norman Levine

•

1. Introduction.

Let (X, \mathcal{T}) be a topological space and define $\mathfrak{S}(\mathcal{T})$ to be $\{S: S=O_1 \times O_1 \cup O_2\}$ $\times O_2$ where $O_i \in \mathscr{T}$ and $X = O_1 \cup O_2$ and let $\mathscr{U}(\mathscr{T})$ be the semi-uniformity for X generated by $\mathfrak{S}(\mathcal{T})$ as subbase.

In this paper an attempt is made to get relationships between \mathcal{T} and $\mathcal{U}(\mathcal{T})$. $\mathscr{T}(\mathscr{U}(\mathscr{T}))$ will denote $\{O^*: x \in O^* \text{ implies that there exists a } U \in \mathscr{U}(\mathscr{T}) \text{ such } U$ that $U[x] \subset O^*$.

THEOREM 1.1 $\mathcal{T}(\mathcal{U}(\mathcal{T})) \subset \mathcal{T}$.

PROOF. Let $x \in O^* \in \mathcal{T}(\mathcal{U}(\mathcal{T}))$. There exists then a $U \in \mathcal{U}(\mathcal{T})$ such that U[x] $\subset O^*$. But $U \supset S_1 \cap \cap \cap S_n$ where $S_i \in \mathfrak{S}(\mathcal{F})$. Thus $x \in S_1[x] \cap \cap \cap S_n[x] \subset U[x] \subset O^*$ and each $S_{i}[x] \in \mathcal{T}$. Thus $O^{*} \in \mathcal{T}$.

In theorem 3.1, a necessary and sufficient condition is given for $\mathcal{T} = \mathcal{T}(\mathcal{U})$ $(\mathcal{T})).$

Let $\mathscr{D}(\mathscr{T}) = \{B^{\mathbb{A}}: B = O_1 \times O_1 \cup \cdots \cup O_n \times O_n \text{ where } O_i \in \mathscr{T} \text{ and } X = O_1 \cup \cdots \cup O_n\}$.

THEOREM 1.2 $\mathscr{B}(\mathscr{T})$ is a base for $\mathscr{U}(\mathscr{T})$.

,

PROOF. We first show that $\mathscr{B}(\mathscr{T}) \subset \mathscr{U}(\mathscr{T})$. Let $X = O_1 \cup \bigcup O_n$, $O_i \in \mathscr{T}$. For each $\sigma \subset \{1, \dots, n\}$, let $G\sigma = \bigcup \{O_i : i \in \sigma\}$. Then $O_1 \times O_1 \cup \cdots \cup O_n \times O_n \supset \cap \{G\sigma \times G\sigma\}$ $\bigcup G_{\mathscr{G}_{\sigma}} \times G_{\mathscr{G}_{\sigma}} : \sigma \subset \{1, \dots, n\} \} \in \mathscr{U}(\mathscr{F}). \text{ Thus } O_1 \times O_1 \cup \bigcup O_n \times O_n \in \mathscr{U}(\mathscr{F}). \text{ Let}$ $X = O_i \cup U_i$, $1 \le i \le n$, where $O_i \in \mathcal{T}$ and $U_i \in \mathcal{T}$. For each $\sigma \subset \{1, \dots, n\}$, let $G\sigma = \bigcap \{O_i : i \in \sigma\} \text{ and } H\sigma = \bigcap \{U_i : i \in \sigma\}. \text{ Then } \bigcap \{O_i \times O_i \cup U_i \times U_i : 1 \leq i \leq n\} \supset \{O_i : i \in \sigma\}.$ $\{G\sigma \cap H\sigma\delta \times G\delta \cap H\sigma\delta : \sigma \subset \{1, \dots, n\} \in \mathscr{B}(\mathscr{T}).$ Hence $\mathscr{B}(\mathscr{T})$ has the base property.

COROLLARY 1.3 $\Delta \in \mathcal{U}(\mathcal{F})$ iff (X, \mathcal{F}) is finite and discrete, Δ denoting the diagonal in $X \times X$.

PROOF. If (X, \mathcal{T}) is finite and discrete, then $\Delta = \bigcup \{\{x\} \times \{x\} : x \in X\} \in \mathscr{B}(\mathcal{T})$.

Norman Levine

Conversely, let $\Delta \in \mathscr{U}(\mathscr{T})$. Then $\Delta \supset O_1 \times O_1 \cup \cdots \cup O_n \times O_n$ where $O_i \in \mathscr{T}$ and $X = \bigcup \{O_i : 1 \le i \le n\}$. Then each O_i is a singleton or is empty. Thus X is finite and \mathscr{T} is discrete.

THEOREM 1.4 A topology \mathcal{T} is a chain (linearly ordered by inclusion) iff $\mathcal{U}(Y \cap \mathcal{T}) = \{Y \times Y\}$ for all $Y \subset X$.

PROOF. Let be \mathscr{T} a chain and suppose hat $Y \subset X$. Suppose further that $Y = (Y \cap O_1) \cup (Y \cap O_2)$ with $O_i \in \mathscr{T}$. We may assume that $O_1 \subset O_2$. It follows then that $(O_1 \cap Y) \times (O_1 \cap Y) \cup (O_2 \cap Y) \times (O_2 \cap Y) = Y \times Y$ and hence $\mathscr{U}(Y \cap \mathscr{T}) = \{Y \times Y\}$ Conversely, suppose that $\mathscr{U}(Y \cap \mathscr{T}) = \{Y \times Y\}$ for all $Y \subset X$. If \mathscr{T} is not a chain, there exist O_i in \mathscr{T} such that $O_1 \not\subset O_2$ and $O_2 \not\subset O_1$; let $Y = O_1 \cup O_2$. Then $O_i \in Y \cap \mathscr{T}$, but $O_1 \times O_1 \cup O_2 \times O_2 \neq Y \times Y$ and hence $\mathscr{U}(Y \cap \mathscr{T}) \neq \{Y \times Y\}$, a contradiction.

THEOREM 1.5 $\mathscr{U}(\mathscr{T}) = \{X \times X\}$ iff $X = O_1 \cup O_2$, $O_i \in \mathscr{T}$ implies that $X = O_1$ or $X = O_2$.

PROOF. Suppose that $\mathscr{U}(\mathscr{T}) = \{X \times X\}$ and that $X = O_1 \cup O_2$, $O_i \in \mathscr{T}$. If $O_i \neq X$ for i=1, 2, then $O_1 \times O_1 \cup O_2 \times O_2 \in \mathscr{U}(\mathscr{T})$, but $O_1 \times O_1 \cup O_2 \times O_2 \neq X \times X$. The converse is clear.

THEOREM 1.6 (X, \mathcal{T}) is connected iff $X \times X$ is the only equivalence relation

in $\mathcal{U}(\mathcal{T})$.

•

180

PROOF. If (X, \mathscr{T}) is not connected, there exist O_1, O_2 disjoint, nonempty open sets such that $X = O_1 \cup O_2$. Then $O_1 \times O_1 \cup O_2 \times O_2$ is an equivalence relation in $\mathscr{U}(\mathscr{T})$ which is different from $X \times X$.

Conversely, suppose E is an equivalence relation in $\mathscr{U}(\mathscr{T})$ which is different from $X \times X$. By theorem 1.2, there exist open sets O_i , $1 \le i \le n$ such that $X = O_1$ $\bigcup \cdots \bigcup O_n$ and $E \supset O_1 \times O_1 \bigcup \cdots \bigcup O_n \times O_n$. Take $x \in X$; let $A = \bigcup \{O_i : O_i \cap E[x] \neq \phi\}$ and let $B = \bigcup \{O_i : O_i \cap E[x] = \phi\}$. Note firstly that if $O_i \cap E[x] \neq \phi$, then $O_i \cap E[x]$. To see this, let $y \in O_i \cap E[x]$. Then $E[x] = E[y] \supset (O_1 \times O_1 \cup \cdots \cup O_n \times O_n)[y] \supset O_i$. It follows then that $\phi \neq A \subset E[x]$ and A is open. Hence $\phi \neq B \in \mathscr{T}$ and $A \cap B = \phi$, X = $A \cup B$. Thus (X, \mathscr{T}) is disconnected.

THEOREM 1.7 Let (X, \mathcal{T}) be a topological space and $Y \subset X$. Then (i) $Y \times Y$ $\cap \mathcal{U}(\mathcal{T}) \subset \mathcal{U}(Y \cap \mathcal{T})$ and (ii) if Y is closed, then equality holds.

.

.

PROOF. (i) Let $U \in \mathscr{U}(\mathscr{T})$; by theorem 1.2, $U \supset O_1 \times O_1 \cup \cdots \cup O_n \times O_n$ where $O_i \in \mathscr{T}$ and $X = O_1 \cup \cdots \cup O_n$. Then $Y \times Y \cap U \supset (Y \cap O_1) \times (Y \cap O_1) \cup \cdots \cup (Y \cap O_n) \times (Y \cap O_n)$ and $Y \times Y \cap U \in \mathscr{U}(Y \cap \mathscr{T})$. (ii) Let Y be closed and suppose $Y = (Y \cap O_1) \cup (Y \cap O_n) \cup (Y \cap O_n)$.

The Finite Square Semi-Uniformity 181

2. Separation Properties.

 $\bigcup O_2 \times O_2 \bigcup \ \mathscr{C}Y \times \mathscr{C}Y) \in Y \times Y \cap \mathscr{U}(\mathscr{T}).$

THEOREM 2.1 (X, \mathcal{T}) is a T_1 -space iff $\cap \mathscr{U}(\mathcal{T}) = \Delta$.

PROOF. Suppose that (X, \mathscr{T}) is a T_1 -space and $x \neq y$. Then $(x, y) \notin \mathscr{C} \{x\} \times \mathscr{C} \{y\} \in \delta(\mathscr{T}) \subset \mathscr{U}(\mathscr{T})$ and $\Delta = \bigcap \mathscr{U}(\mathscr{T})$.

 (O_2) where $O_i \in \mathscr{T}$. Then $(Y \cap O_1) \times (Y \cap O_1) \cup (Y \cap O_2) \times (Y \cap O_2) \supset Y \times Y \cap (O_1 \times O_1)$

Conversely, suppose that $\Delta = \bigcap \mathscr{U}(\mathscr{T})$. We will show that $\mathscr{C} \{x\} \in \mathscr{T}$ for each x. Let $y \in \mathscr{C} \{x\}$: then $x \neq y$ and hence there exist open sets O_i such that $X = O_1$ $\bigcup O_2$ and $(x, y) \notin O_1 \times O_1 \bigcup O_2 \times O_2$. If $x \in O_1$, then $y \notin O_1$ and $y \in O_2 \subset \mathscr{C} \{x\}$; if $x \notin O_1$, then $x \in O_2$ and $y \notin O_2$ and $y \in O_1 \subset \mathscr{C} \{x\}$.

A space (X, \mathcal{T}) is called a $T_{2.5}$ -space iff $x \neq y$ implies that there exist open sets O_1 and O_2 such that $x \in O_1$, $y \in O_2$ and $c(O_1) \cap c(O_2) = \phi$, c denoting the closure operator.

THEOREM 2.2 A space (X, \mathcal{T}) is a $T_{2.5}$ -space iff $\Delta = \bigcap \{cU : U \in \mathcal{U}(\mathcal{T})\}$. PROOF. Suppose that (X, \mathcal{T}) is a $T_{2.5}$ -space and $x \neq y$. There exist then open

sets O_1 and O_2 such that $x \in O_1$, $y \in O_2$ and $cO_1 \cap cO_2 = \phi$. Then $X = \mathscr{C}cO_1 \cup \mathscr{C}cO_2$, but $(x, y) \notin \mathscr{C}\mathscr{C}cO_1 \times \mathscr{C}\mathscr{C}cO_1 \cup \mathscr{C}\mathscr{C}cO_2 \times \mathscr{C}\mathscr{C}cO_2$ since $y \notin \mathscr{C}\mathscr{C}cO_2$ and $x \notin \mathscr{C}\mathscr{C}cO_1$. Thus $(x, y) \notin \cap \{cU : U \in \mathscr{U}(\mathscr{F})\}.$

Conversely, suppose that $\Delta = \bigcap \{cU : U \in \mathscr{U}(\mathscr{T})\}$ and $x \neq y$. Then $(x, y) \notin cU$ for some $U \in \mathscr{U}(\mathscr{T})$. Then by theorem 2.1, $U \supset O_1 \times O_1 \cup \cdots \cup O_n \times O_n$ where $O_i \in \mathscr{T}$ and $X = O_1 \cup \cdots \cup O_n$. Hence $(x, y) \in A \times B \subset \mathscr{C} cU \subset \mathscr{C}(O_1 \times O_1 \cup \cdots \cup O_n \times O_n) \subset \mathscr{C} \Delta$ where A and B are in \mathscr{T} . Then $cA \times cB \subset \mathscr{C} \Delta$ and hence $cA \cap cB = \phi$. It follows then that (X, \mathscr{T}) is a $T_{2.5}$ -space.

THEOREM 2.3 A space (X, \mathcal{T}) is normal iff $\{cU: U \in \mathcal{U}(\mathcal{T})\}$ is a base for $\mathcal{U}(\mathcal{T})$.

PROOF Let (X, \mathscr{T}) be normal and suppose that $V \in \mathscr{U}(\mathscr{T})$. Then $V \supset O_1 \times O_1$ $\cup \cdots \cup O_n \times O_n$ where $O_i \in \mathscr{T}$ and $X = O_1 \cup \cdots \cup O_n$. Since (X, \mathscr{T}) is normal, there exist open sets $O_1^* \cdots, O_n^*$ which cover X and $cO_i^* \subset O_i$. Thus letting $U = O_1^* \times O_1^* \cup \cdots \cup O_n^* \times O_n^*$, it follows that $V \supset cU$ and $U \in \mathscr{U}(\mathscr{T})$.

Norman Levine

.

Conversely, let $\{cU: U \in \mathscr{U}(\mathscr{F})\}$ be a base for $\mathscr{U}(\mathscr{F})$. To show that (X, \mathscr{F}) is normal, let $X = O_1 \cup O_2$ where $O_i \in \mathscr{F}$. It suffices to find closed sets E_1 and E_2 which cover X and for which $E_i \subset O_i$. Now $O_1 \times O_1 \cup O_2 \times O_2 \in \mathscr{U}(\mathscr{F})$ and hence contains $cO_1^* \times cO_1^* \cup \cdots \cup cC_n^* \times cO_n^*$ for some open cover O_1^* , \cdots , O_n^* of X. It is clear that $cO_i^* \times cO_i^* \subset O_1 \times O_1$ or $cO_i^* \times cO_i^* \subset O_2 \times O_2$ for each *i*. Let E_1 $= \bigcup \{cO_i^*: cO_i^* \times cO_i^* \subset O_1 \times O_1\}$ and $E_2 = \bigcup \{cO_i^*: cO_i^* \subset O_2 \times O_2\}$. It is clear

that E_1 and E_2 are the required sets.

,

3. R_0 -spaces.

182

A space (X, \mathscr{T}) is called an R_0 -space iff $x \in O \in \mathscr{T}$ implies that $c(x) \subset O$.

THEOREM 3.1 A space (X, \mathcal{T}) is an R_0 -space iff $\mathcal{T}(\mathcal{U}(\mathcal{T})) = \mathcal{T}$.

PROOF. Suppose that (X, \mathcal{F}) is an R_0 space. By theorem 1.1, it suffices to show that $\mathcal{F}\subset \mathcal{F}(\mathcal{U}(\mathcal{F}))$: let $x\in O\in \mathcal{F}$. Then $c(x)\subset O$ and $X=O\cup \mathscr{C}c(x)$. Hence $O\times O\cup \mathscr{C}c(x)\times \mathscr{C}c(x)\in \mathscr{U}(\mathcal{F})$ and $(O\times O\cup \mathscr{C}c(x)\times \mathscr{C}c(x))[x]=O$.

Conversely, suppose that $\mathscr{T} = \mathscr{T}(\mathscr{U}(\mathscr{T}))$ and let $x \in O \in \mathscr{T}$. Let $y \in c(x)$; we will show that $y \in O$. There exists a $U \in \mathscr{U}(\mathscr{T})$ such that $U[x] \subset O$. By theorem 1.2, there exists a symmetric open set G which contains the diagonal and is contained in U. Then G[y] is open and hence $G[y] \cap \{x\} \neq \phi$. Thus $y \in G[x] \subset U[x] \subset O$.

THEOREM 3.2 Suppose that \mathcal{T}_1 and \mathcal{T}_2 are topologies for X. Then (1) if $\mathcal{T}_1 \subset \mathcal{T}_2$, then $\mathcal{U}(\mathcal{T}_1) \subset \mathcal{U}(\mathcal{T}_2)$ and (2) if \mathcal{T}_1 is R_0 and $\mathcal{U}(\mathcal{T}_1) \subset \mathcal{U}(\mathcal{T}_2)$, then $\mathcal{T}_1 \subset \mathcal{T}_2$.

PROOF. (1) is clear. (2) Let $x \in O \in \mathscr{T}_1$. Then $c_1(x) \subset O$, c_1 denoting the closure operator relative to \mathscr{T}_1 . Then $O \times O \cup \mathscr{C}_1(x) \times \mathscr{C}_1(x) \in \mathscr{U}(\mathscr{T}_1) \subset \mathscr{U}(\mathscr{T}_2)$. Hence there exists a $G \in \mathscr{T}_2 \times \mathscr{T}_2$ such that $O \times O \cup \mathscr{C}_1(x) \times \mathscr{C}_1(x) \supset G \supset A$. Thus O = $(O \times O \cup \mathscr{C}_1(x) \times \mathscr{C}_1(x))[x] \supset G[x] \supset \{x\}$. But $G[x] \in \mathscr{T}_2$ and $x \in G[x] \subset O$. It follows then that $O \in \mathscr{T}_2$.

COROLLARY 3.3 Let \mathcal{T}_1 and \mathcal{T}_2 be R_0 -topologies for X. Then $\mathcal{T}_1 = \mathcal{T}_2$ iff $\mathcal{U}(\mathcal{T}_1) = \mathcal{U}(\mathcal{T}_2)$.

THEOREM 3.4 Let (X, \mathcal{T}) be an R_0 -space. Then $\mathcal{T} = \{\phi, X\}$ iff $\mathcal{U}(\mathcal{T}) = \{X \times X\}$.

PROOF. If $\mathscr{T} = \{\phi, X\}$, then clearly $\mathscr{U}(\mathscr{T}) = \{X \times X\}$. Conversely, suppose that $\mathscr{U}(\mathscr{T}) = \{X \times X\}$ and that $\phi \neq 0 \in \mathscr{T}$; let $x \in X$. It

The Finite Square Semi-Uniformity 183

follows then that $X \times X = O \times O \cup \mathscr{C}(x) \times \mathscr{C}(x)$ and hence $X = (O \times O \cup \mathscr{C}(x) \times C)$ $\mathscr{C}(\mathbf{x})[\mathbf{x}] = 0.$

4. Countability.

THEOREM 4.1 $\mathcal{U}(\mathcal{T})$ has a countable base if (X, \mathcal{T}) is compact and second axiom.

PROOF. Let $\{O_i : i \in P\}$ be a countable base for \mathcal{T} and suppose that $X = O \cup G$, $0 \in \mathcal{T}$, $G \in \mathcal{T}$. Then $X = \bigcup \{O_i : O_i \subset O \text{ or } O_i \subset G\}$ and since (X, \mathcal{T}) is compact, there exist O_{i_i} , $1 \le j \le n$ such that $X = \bigcup \{O_{i_i} : 1 \le j \le n\}$ and $O_{i_i} \subset O$ or $O_{i_i} \subset G$. Hence $O \times O \cup G \times G \supset \bigcup \{O_i \times O_i : 1 \le j \le n\} \supset A$. Thus $\{\bigcup \{O_i \times O_i : i \in P^* \subset P, P^*\}$ finite, $X = \bigcup \{O_i : i \in P^*\}\}$ is a countable base for $\mathcal{U}(\mathcal{T})$.

THEOREM 4.2 (X, \mathcal{T}) is a second axiom space if $\mathcal{U}(\mathcal{T})$ has a countable base and (X, \mathcal{T}) is an R_0 -space.

PROOF. Let $\{U_i : i \in P\}$ be a countable base for $\mathcal{U}(\mathcal{I})$. By theorem 1.2, for each integer *i*, there exist open sets O_j^i , $1 \le j \le n_i$ such that $U_i \supset \bigcup \{O_j^i \times O_j^i : 1 \le j\}$ $\leq n_i \} \supset \Delta$. Then $\{O_j^i : 1 \leq j \leq n_i, i \in P\}$ is a countable base for \mathscr{T} . To see this, let $x \in O \in \mathscr{T}$. Then for some integer *i*, $O \times O \cup \mathscr{C}(x) \times \mathscr{C}(x) \supset U_i \supset \cup \{O_j^i \times O_j^i : 1 \leq j \leq i\}$ n_i . Then $x \in O_i^i$ for some j and $x \in O_j^i \subset O$.

5. $\mathcal{U}(\mathcal{T})$ a uniformity generated by equivalence relations.

LEMMA 5.1 Suppose that $A_1 \times A_1 \cup \cdots \cup A_n \times A_n \in \mathcal{U}(\mathcal{T})$, $A_i \cap A_i = \phi$ when $i \neq j$ and that $X = A_1 \cup \cdots \cup A_n$. Then each A_i is open and closed.

PROOF. It suffices to show that each A_i is open. By theorem 1.2, $A_1 \times A_1 \cup \cdots$ $\bigcup A_n \times A_n \supset O_1 \times O_1 \bigcup \dots \bigcup O_m \times O_m \supset A$ where $O_i \in \mathscr{T}$. Let $x \in A_i$. Then $x \in O_i$ for some j. Thus $A_i = (A_1 \times A_1 \cup \cdots \cup A_n \times A_n) [x] \supset (O_i \times O_i) [x] = O_i \supset \{x\}$.

An equivalence relation E on a set X is termed of *finite character* iff $\{E[x]:$ $x \in X$ is finite.

THEOREM 5.2 $\mathcal{U}(\mathcal{T})$ has a base of equivalence relations of finite character iff for each closed set E and each open set O for which $E \subseteq O$, there exists a clopen set C such that $E \subset C \subset O$.

PROOF. Sufficiency. Let $X = O_1 \cup O_2$, O_i being open. Then $\mathscr{C}O_2 \subset O_1$ and hence $\mathscr{C}_2 \subset \mathbb{C} \subset \mathcal{O}_1$ for some clopen set C. Hence $\mathcal{O}_1 \times \mathcal{O}_1 \cup \mathcal{O}_2 \times \mathcal{O}_2 \supset \mathbb{C} \times \mathbb{C} \cup \mathscr{C} \times \mathscr{C} \subset \mathscr{C}$

Norman Levine

•

i

184

(\mathscr{T}). It follows then that each $U \in \mathscr{U}(\mathscr{T})$ contains a finite intersection of sets of the form $C \times C \cup \mathscr{C} \times \mathscr{C} C$. Such finite intersections are equivalence relations of finite character.

•

Necessity. Let $E \subseteq O$, E being closed and O being open. Then $O \times O \cup \mathscr{C} E \times \mathscr{C} E \subseteq \mathscr{U}(\mathscr{T})$ and hence $O \times O \cup \mathscr{C} E \times \mathscr{C} E \supseteq A_1 \times A_1 \cup \cdots \cup A_n \times A_n$ where $A_i \cap A_j = \phi$ when $i \neq j$ and $A_1 \times A_1 \cup \cdots \cup A_n \times A_n \in \mathscr{U}(\mathscr{T})$. By lemma 5.1, each A_i is clopen. Let $O^* = \bigcup \{A_i : A_i \subseteq O\}$. O^* is clearly clopen; it suffices to show that $E \subseteq O^*$. Let

 $x \in E$: then $x \in A_i$ for some *i*. It suffices to show that $A_i \subset O$. Suppose $A_i \not\subset O$: take $a \in A_i - O$. Then $(x, a) \in A_i \times A_i \subset O \times O \cup \mathscr{C}E \times \mathscr{C}E$. But $(x, a) \notin O \times O \cup \mathscr{C}E \times \mathscr{C}E$, a contradiction.

COROLLARY'5.3 Let (X, \mathcal{T}) be compact and zero dimensional. Then $\mathcal{U}(\mathcal{T})$ has a base of equivalence relations of finite character.

The Ohio State University

.

REFERENCES

John L. Kelley, General Topology, D. Van Nostrand Company, Inc., 1955.
William J. Pervin. Foundations of General Topology, Academic Press, 1964.

•