Kyungpook Math. J.

Volume 13, Number 2
December, 1973

THE FINITE SQUARE SEMI-UNIFORMITY

By Norman Levine

1. Introduction.

Let (X, \mathscr{F}) be a topological space and define $\mathscr{S}(\mathscr{T})$ to be $\left\{S: S=O_{1} \times O_{1} \cup O_{2}\right.$ $\times O_{2}$ where $O_{i} \in \mathscr{G}$ and $\left.X=O_{1} \cup O_{2}\right\}$ and let $\mathscr{U}(\mathscr{F})$ be the semi-uniformity for X generated by $\mathbb{S}(\mathscr{I})$ as subbase.

In this paper an attempt is made to get relationships between \mathscr{T} and $\mathscr{U}(\mathscr{T})$. $\mathscr{T}(\mathscr{U}(\mathscr{F}))$ will denote $\left\{O^{*}: x \in O^{*}\right.$ implies that there exists a $U \in \mathscr{U}(\mathscr{I})$ such that $\left.U[x] \subset O^{*}\right\}$.

THEOREM $1.1 \mathscr{T}(\mathscr{U}(\mathscr{T})) \subset \mathscr{T}$.
PROOF. Let $x \in O^{*} \in \mathscr{T}(\mathscr{K}(\mathscr{I}))$. There exists then a $U \in \mathscr{U}(\mathscr{T})$ such that $U[x]$ $\subset O^{*}$. But $U \supset S_{1} \cap \cdots \cap S_{n}$ where $S_{i} \in \subseteq(\mathscr{T})$. Thus $x \in S_{1}[x] \cap \cdots \cap S_{n}[x] \subset U[x] \subset O^{*}$ and each $S_{i}[x] \in \mathscr{T}$. Thus $O^{*} \in \mathscr{T}$.

In theorem 3.1, a necessary and sufficient condition is given for $\mathscr{T}=\mathscr{F}(\mathscr{K}$ ($\mathscr{T})$).

Let $\mathscr{P}(\mathscr{T})=\left\{B: B=O_{1} \times O_{1} \cup \cdots \cup O_{n} \times O_{n}\right.$ where $O_{i} \in \mathscr{G}$ and $\left.X=O_{1} \cup \cdots \cup O_{n}\right\}$.
THEOREM $1.2 \mathscr{B}(\mathscr{T})$ is a base for $\mathscr{K}(\mathscr{G})$.
PROOF. We first show that $\mathscr{B}(\mathscr{T}) \subset \mathscr{U}(\mathscr{I})$. Let $X=O_{1} \cup \cdots \cup O_{n}, O_{i} \in \mathscr{G}$. For each $\sigma \subset\{1, \cdots, n\}$, let $G \sigma=\cup\left\{O_{i}: i \in \sigma\right\}$. Then $O_{1} \times O_{1} \cup \cdots \cup O_{n} \times O_{n} \supset \cap\{G \sigma \times G \sigma$ $\left.\cup G_{\mathscr{E} \sigma} \times G_{\mathscr{G} \sigma}: \sigma \subset\{1, \cdots, n\}\right\} \in \mathscr{U}(\mathscr{F})$. Thus $O_{1} \times O_{1} \cup \cdots \cup O_{n} \times O_{n} \in \mathscr{U}(\mathscr{G})$. Let $X=O_{i} \cup U_{i}, 1 \leq i \leq n$, where $O_{i} \in \mathscr{T}$ and $U_{i} \in \mathscr{G}$. For each $\sigma \subset\{1, \cdots, n\}$, let $G \sigma=\cap\left\{O_{i}: i \in \sigma\right\}$ and $H \sigma=\cap\left\{U_{i}: i \in \sigma\right\}$. Then $\cap\left\{O_{i} \times O_{i} \cup U_{i} \times U_{i}: 1 \leq i \leq n\right\} \supset$ $\{G \sigma \cap H \sigma \delta \times G \delta \cap H \sigma \delta: \sigma \subset\{1, \cdots, \quad n\} \in \mathscr{F}(\mathscr{T})$. Hence $\mathscr{B}(\mathscr{T})$ has the base property.

COROLLARY $1.3 \Delta \in \mathscr{G}(\mathscr{T})$ iff (X, \mathscr{T}) is finite and discrete, Δ denoting the diagonal in $X \times X$.

PROOF. If (X, \mathscr{F}) is finite and discrete, then $\Delta=\bigcup\{\{x\} \times\{x\}: x \in X\} \in \mathscr{O}(\mathscr{F})$.

Conversely, let $\Delta \in \mathscr{U}(\mathscr{T})$. Then $\Delta \supset O_{1} \times O_{1} \cup \cdots \cup O_{n} \times O_{n}$ where $O_{i} \in \mathscr{S}$ and $X=\bigcup\left\{O_{i}: 1 \leq i \leq n\right\}$. Then each O_{i} is a singleton or is empty. Thus X is finite and \mathscr{T} is discrete.

THEOREM 1.4 A topology \mathscr{T} is a chain (linearly ordered by inclusion) iff \mathscr{U} $(Y \cap \mathscr{G})=\{Y \times Y\}$ for all $Y \subset X$.

PROOF. Let be \mathscr{T} a chain and suppose hat $Y \subset X$. Suppose further that $Y=$ $\left(Y \cap O_{1}\right) \cup\left(Y \cap O_{2}\right)$ with $O_{i} \in \mathscr{F}$. We may assume that $O_{1} \subset O_{2}$. It follows then that $\left(O_{1} \cap Y\right) \times\left(O_{1} \cap Y\right) \cup\left(O_{2} \cap Y\right) \times\left(O_{2} \cap Y\right)=Y \times Y$ and hence $\mathscr{U}(Y \cap \mathscr{F})=\{Y \times Y\}$.

Conversely, suppose that $\mathscr{U}(Y \cap \mathscr{G})=\{Y \times Y\}$ for all $Y \subset X$. If \mathscr{F} is not a chain, there exist O_{i} in \mathscr{G} such that $O_{1} \not \subset O_{2}$ and $O_{2} \not \subset O_{1}$; let $Y=O_{1} \cup O_{2}$. Then O_{i} $\in Y \cap \mathscr{T}$, but $O_{1} \times O_{1} \cup O_{2} \times O_{2} \neq Y \times Y$ and hence $\mathscr{U}(Y \cap \mathscr{I}) \neq\{Y \times Y\}$, a contradiction.

THEOREM $1.5 \mathscr{U}(\mathscr{F})=\{X \times X\}$ iff $X=O_{1} \cup O_{2}, O_{i} \in \mathscr{G}$ implies that $X=O_{1}$ or $X=O_{2}$ 。

PROOF. Suppose that $\mathscr{U}(\mathscr{T})=\{X \times X\}$ and that $X=O_{1} \cup O_{2}, O_{i} \in \mathscr{G}$. If $O_{i} \neq X$ for $i=1$, 2, then $O_{1} \times O_{1} \cup O_{2} \times O_{2} \in \mathscr{U}(\mathscr{T})$, but $O_{1} \times O_{1} \cup O_{2} \times O_{2} \neq X \times X$.

The converse is clear.
THEOREM $1.6(X, \mathscr{F})$ is connected iff $X \times X$ is the only equivalence relation in $\mathscr{U}(\mathscr{T})$.

PROOF. If (X, \mathscr{T}) is not connected, there exist O_{1}, O_{2} disjoint, nonempty open sets such that $X=O_{1} \cup O_{2}$. Then $O_{1} \times O_{1} \cup O_{2} \times O_{2}$ is an equivalence relation in $\mathscr{U}(\mathscr{T})$ which is different from $X \times X$.

Conversely, suppose E is an equivalence relation in $\mathscr{U}(\mathscr{F})$ which is different from $X \times X$. By theorem 1.2, there exist open sets $O_{i}, 1 \leq i \leq n$ such that $X=O_{1}$ $\cup \cdots \cup O_{n}$ and $E \supset O_{1} \times O_{1} \cup \cdots \cup O_{n} \times O_{n}$. Take $x \in X$; let $A=\cup\left\{O_{i}: O_{i} \cap E[x] \neq \phi\right\}$ and let $B=\bigcup\left\{O_{i}: O_{i} \cap E[x]=\phi\right\}$. Note firstly that if $O_{i} \cap E[x] \neq \phi$, then $O_{i} \cap E[x]$. To see this, let $y \in O_{i} \cap E[x]$. Then $E[x]=E[y] \supset\left(O_{1} \times O_{1} \cup \cdots \cup O_{n} \times O_{n}\right)[y] \supset O_{i}$. It follows then that $\phi \neq A \subset E[x]$ and A is open. Hence $\phi \neq B \in \mathscr{T}$ and $A \cap B=\phi, X=$ $A \cup B$. Thus (X, \mathscr{T}) is disconnected.

THEOREM 1.7 Let (X, \mathscr{T}) be a topological space and $Y \subset X$. Then (i) $Y \times Y$ $\cap \mathscr{U}(\mathscr{T}) \subset \mathscr{K}(Y \cap \mathscr{S})$ and (ii) if Y is closed, then equality holds.

PROOF. (i) Let $U \in \mathscr{U}(\mathscr{T})$: by theorem 1.2, $U \supset O_{1} \times O_{1} \cup \cdots \cup O_{n} \times O_{n}$ where O_{i} $\in \mathscr{S}$ and $X=O_{1} \cup \cdots \cup O_{n}$. Then $Y \times Y \cap U \supset\left(Y \cap O_{1}\right) \times\left(Y \cap O_{1}\right) \cup \cdots \cup\left(Y \cap O_{n}\right) \times(Y \cap$ $\left.O_{n}\right)$ and $Y \times Y \cap U \in \mathscr{U}(Y \cap \mathscr{F})$. (ii) Let Y be closed and suppose $Y=\left(Y \cap O_{1}\right) \cup(Y$ $\left.\cap O_{2}\right)$ where $O_{i} \in \mathscr{T}$. Then $\left(Y \cap O_{1}\right) \times\left(Y \cap O_{1}\right) \cup\left(Y \cap O_{2}\right) \times\left(Y \cap O_{2}\right) \supset Y \times Y \cap\left(O_{1} \times O_{1}\right.$ $\left.\cup O_{2} \times O_{2} \cup \mathscr{E} Y \times \mathscr{E} Y\right) \in Y \times Y \cap \mathscr{Z}(\mathscr{T})$.

2. Separation Properties.

THEOREM 2.1 (X, \mathscr{T}) is a T_{1}-space iff $\cap \mathscr{\mathscr { C }}(\mathscr{T})=\Delta$.
PROOF. Suppose that (X, \mathscr{F}) is a T_{1}-space and $x \neq y$. Then $(x, y) \notin \mathscr{C}\{x\} \times$ $\mathscr{B}\{x\} \cup \mathscr{C}\{y\} \times \mathscr{C}\{y\} \in \delta(\mathscr{T}) \subset \mathscr{U}(\mathscr{T})$ and $\Delta=\cap \mathscr{U}(\mathscr{I})$.

Conversely, suppose that $\Delta=\cap \mathscr{C}(\mathscr{T})$. We will show that $\mathscr{E}\{x\} \in \mathscr{T}$ for each x. Let $y \in \mathscr{C}\{x\}$; then $x \neq y$ and hence there exist open sets O_{i} such that $X=O_{1}$ $\cup O_{2}$ and $(x, y) \notin O_{1} \times O_{1} \cup O_{2} \times O_{2}$. If $x \in O_{1}$, then $y \notin O_{1}$ and $y \in O_{2} \subset \mathscr{C}\{x\}$; if $x \notin O_{1}$, then $x \in O_{2}$ and $y \notin O_{2}$ and $y \in O_{1} \subset \mathscr{E}\{x\}$.

A space (X, \mathscr{F}) is called a $T_{2.5}$-space iff $x \neq y$ implies that there exist open sets O_{1} and O_{2} such that $x \in O_{1}, y \in O_{2}$ and $\mathrm{c}\left(O_{1}\right) \cap \mathrm{c}\left(O_{2}\right)=\phi$, c denoting the closure operator.

THEOREM 2.2 A space (X, \mathscr{T}) is a $T_{2.5}$-space iff $\Delta=\cap\{c U: U \in \mathscr{U}(\mathscr{T})\}$.
PROOF. Suppose that (X, \mathscr{F}) is a $T_{2.5}$-space and $x \neq y$. There exist then open sets O_{1} and O_{2} such that $x \in O_{1}, y \in O_{2}$ and $\mathrm{c}_{1} \cap \mathrm{c} O_{2}=\phi$. Then $X=\mathscr{E} \mathrm{cO}_{1} \cup \mathscr{E} \mathrm{co}_{2}$, but $(x, y) \notin \mathrm{C} \mathscr{E} \mathrm{cO}_{1} \times \mathrm{c} \mathscr{E} \mathrm{cO}_{1} \cup \mathrm{C} \mathscr{G} \mathrm{cO}_{2} \times \mathrm{c} \mathscr{\mathscr { C }} \mathrm{c}_{2}$ since $y \notin \mathrm{c} \mathscr{\mathscr { C }} \mathrm{c} O_{2}$ and $x \notin \mathrm{c} \mathscr{E} \mathrm{c} O_{1}$. Thus $(x, y) \notin \cap\{c U: U \in \mathscr{U}(\mathscr{T})\}$.
Conversely, suppose that $\Delta=\cap\{c U: U \in \mathscr{C}(\mathscr{G})\}$ and $x \neq y$. Then $(x, y) \notin \mathrm{c} U$ for some $U \in \mathscr{U}(\mathscr{T})$. Then by theorem 2.1, $U \supset O_{1} \times O_{1} \cup \cdots \cup O_{n} \times O_{n}$ where $O_{i} \in \mathscr{T}$ and $X=O_{1} \cup \cdots \cup O_{n}$. Hence $(x, y) \in A \times B \subset \mathscr{C} c U \subset \mathscr{E}\left(O_{1} \times O_{1} \cup \cdots \cup O_{n} \times O_{n}\right) \subset \mathscr{C} \Delta$ where A and B are in \mathscr{T}. Then $\mathrm{c} A \times \mathrm{c} B \subset \mathscr{E} A$ and hence $\mathrm{c} A \cap \mathrm{c} B=\phi$. It follows then that (X, \mathscr{F}) is a $T_{2.5}$-space.
THEOREM 2.3 A space (X, \mathscr{T}) is normal iff $\{c U: U \in \mathscr{U}(\mathscr{T})\}$ is a base for $\mathscr{U}(\mathscr{T})$.

PROOF Let (X, \mathscr{F}) be normal and suppose that $V \in \mathscr{U}(\mathscr{F})$. Then $V \supset O_{1} \times O_{1}$ $\cup \cdots \cup O_{n} \times O_{n}$ where $O_{i} \in \mathscr{T}$ and $X=O_{1} \cup \cdots \cup O_{n}$. Since (X, \mathscr{F}) is normal, there exist open sets $O_{1}{ }^{*} \cdots, O_{n}{ }^{*}$ which cover X and $\mathrm{cO}_{i}{ }^{*} \subset O_{i}$. Thus letting $U=$ $O_{1}{ }^{*} \times O_{1}{ }^{*} \cup \cdots \cup O_{n}{ }^{*} \times O_{n}{ }^{*}$, it follows that $V \supset \mathrm{c} U$ and $U \in \mathscr{K}(\mathscr{T})$.

Conversely, let $\{\mathbb{U} U: U \in \mathscr{K}(\mathscr{T})\}$ be a base for $\mathscr{U}(\mathscr{I})$. To show that (X, \mathscr{F}) is normal, let $X=O_{1} \cup O_{2}$ where $O_{i} \in \mathscr{F}$. It suffices to find closed sets E_{1} and E_{2} which cover X and for which $E_{i} \subset O_{i^{\prime}}$. Now $O_{1} \times O_{1} \cup O_{2} \times O_{2} \in \mathscr{U}(\mathscr{T})$ and hence contains $\mathrm{cO}_{1}{ }^{*} \times \mathrm{cO}_{1}{ }^{*} \cup \cdots \cup \mathrm{UcC}_{n}{ }^{*} \times \mathrm{cO}_{n}^{*}$ for some open cover $O_{1}{ }^{*}, \cdots, O_{n}{ }^{*}$ of X. It is clear that $\mathrm{cO}_{i}{ }^{*} \times \mathrm{CO}_{i}^{*} \subset O_{1} \times O_{1}$ or $\mathrm{cO}_{i}{ }^{*} \times \mathrm{cO}_{i}{ }^{*} \subset \mathrm{O}_{2} \times O_{2}$ for each i. Let E_{1} $=\bigcup\left\{\mathrm{cO}_{i}{ }^{*}: \mathrm{cO}_{i}{ }^{*} \times \mathrm{cO}_{i}{ }^{*} \subset O_{1} \times O_{1}\right\}$ and $E_{2}=\cup\left\{\mathrm{cO}_{i}^{*}: \mathrm{cO}_{i}^{*} \times \mathrm{cO}_{i}^{*} \subset O_{2} \times O_{2}\right\}$. It is clear that E_{1} and E_{2} are the required sets.

3. R_{0}-spaces.

A space (X, \mathscr{F}) is called an R_{0}-space iff $x \in O \in \mathscr{F}$ implies that $\mathrm{c}(x) \subset O$.
THEOREM 3.1 A space (X, \mathscr{T}) is an R_{0}-space iff $\mathscr{I}(\mathscr{K}(\mathscr{T}))=\mathscr{T}$.
PROOF. Suppose that (X, \mathscr{F}) is an R_{0} space. By theorem 1.1, it suffices to show that $\mathscr{F} \subset \mathscr{G}(\mathscr{K}(\mathscr{T}))$; let $x \in O \in \mathscr{F}$. Then $\mathrm{c}(x) \subset O$ and $X=O \cup \mathscr{C} \mathrm{c}(x)$. Hence $O \times O \cup \mathscr{C} c(x) \times \mathscr{B} c(x) \in \mathscr{U}(\mathscr{F})$ and $(O \times O \cup \mathscr{E} c(x) \times \mathscr{C} c(x))[x]=0$.

Conversely, suppose that $\mathscr{F}=\mathscr{F}(\mathscr{U}(\mathscr{T}))$ and let $x \in O \in \mathscr{T}$. Let $y \in c(x)$; we will show that $y \in O$. There exists a $U \in \mathscr{U}(\mathscr{F})$ such that $U[x] \subset O$. By theorem 1.2 , there exists a symmetric open set G which contains the diagonal and is contained in U. Then $G[y]$ is open and hence $G[y] \cap\{x\} \neq \phi$. Thus $y \in G[x] \subset$ $U[x] \subset O$.

THEOREM 3.2 Suppose that \mathscr{T}_{1} and \mathscr{T}_{2} are topologies for X. Then (1) if $\mathscr{T}_{1} \subset \mathscr{T}_{2}$, then $\mathscr{K}\left(\mathscr{T}_{1}\right) \subset \mathscr{U}\left(\mathscr{T}_{2}\right)$ and (2) if \mathscr{T}_{1} is R_{0} and $\mathscr{U}\left(\mathscr{T}_{1}\right) \subset \mathscr{U}\left(\mathscr{F}_{2}\right)$, then $\mathscr{T}_{1} \subset \mathscr{F}_{2}$.

PROOF. (1) is clear. (2) Let $x \in O \in \mathscr{F}_{1}$. Then $\mathrm{c}_{1}(x) \subset O, \mathrm{c}_{1}$ denoting the closure operator relative to \mathscr{T}_{1}. Then $O \times O \cup \mathscr{C} \mathrm{c}_{1}(x) \times \mathscr{C} \mathrm{c}_{1}(x) \in \mathscr{U}\left(\mathscr{T}_{1}\right) \subset \mathscr{U}\left(\mathscr{T}_{2}\right)$. Hence there exists a $G \in \mathscr{F}_{2} \times \mathscr{F}_{2}$ such that $O \times O \cup \mathscr{G} \mathrm{c}_{1}(x) \times \mathscr{G} \mathrm{c}_{1}(x) \supset G \supset \Delta$. Thus $O=$ $\left(O \times O \cup \mathscr{C} \mathrm{c}_{1}(x) \times \mathscr{E} \mathrm{c}_{1}(x)\right)[x] \supset G[x] \supset\{x\}$. But $G[x] \in \mathscr{\mathscr { T }}$ and $x \in G[x] \subset O$. It follows then that $O \in \mathscr{I}_{2}$.

COROLLARY 3.3 Let \mathscr{T}_{1} and \mathscr{T}_{2} be R_{0}-topologies for X. Then $\mathscr{T}_{1}=\mathscr{F}_{2}$ iff $\mathscr{U}\left(\mathscr{T}_{1}\right)=\mathscr{U}\left(\mathscr{T}_{2}\right)$.

THEOREM 3.4 Let (X, \mathscr{T}) be an R_{0}-space. Then $\mathscr{T}=\{\phi, X\}$ iff $\mathscr{U}(\mathscr{T})=$ $\{X \times X\}$.

PROOF. If $\mathscr{T}=\{\phi, X\}$, then clearly $\mathscr{U}(\mathscr{I})=\{X \times X\}$.
Conversely, suppose that $\mathscr{U}(\mathscr{G})=\{X \times X\}$ and that $\phi \neq O \in \mathscr{G}$; let $x \in X$. It
follows then that $X \times X=O \times O \cup \mathscr{E} c(x) \times \mathscr{E} c(x)$ and hence $X=(O \times O \cup \mathscr{C} c(x) \times$ $\mathscr{E} c(x))[x]=0$.

4. Countability.

THEOREM $4.1 \mathscr{K}(\mathscr{T})$ has a countable base if (X, \mathscr{T}) is compact and second axiom.

PROOF. Let $\left\{O_{i}: i \in P\right\}$ be a countable base for \mathscr{T} and suppose that $X=O \cup G$, $O \in \mathscr{T}, G \in \mathscr{F}$. Then $X=\cup\left\{O_{i}: O_{i} \subset O\right.$ or $\left.O_{i} \subset G\right\}$ and since (X, \mathscr{I}) is compact, there exist $O_{i}, \quad 1 \leq j \leq n$ such that $X=\cup\left\{O_{i}: 1 \leq j \leq n\right\}$ and $O_{i} \subset O$ or $O_{i} \subset G$. Hence $O \times O \cup G \times G \supset \cup\left\{O_{i} \times O_{i,}: 1 \leq j \leq n\right\} \supset \Delta$. Thus $\left\{\cup\left\{O_{i} \times O_{i}: i \in P^{*} \subset P, P^{*}\right.\right.$ finite, $\left.\left.X=\bigcup\left\{O_{i}: i \in P^{*}\right\}\right\}\right\}$ is a countable base for $\mathscr{U}(\mathscr{T})$.

THEOREM $4.2(X, \mathscr{F})$ is a second axiom space if $\mathscr{U}(\mathscr{T})$ has a countable base and (X, \mathscr{F}) is an R_{0}-space.

PROOF. Let $\left\{U_{i}: i \in P\right\}$ be a countable base for $\mathscr{U}(\mathscr{T})$. By theorem 1.2, for each integer i, there exist open sets $O_{j}^{i}, 1 \leq j \leq n_{i}$ such that $U_{i} \supset \cup\left\{O_{j}^{i} \times O_{j}^{i}: 1 \leq j\right.$ $\left.\leq n_{i}\right\} \supset \Delta$. Then $\left\{O_{j}^{i}: 1 \leq j \leq n_{i}, i \in P\right\}$ is a countable base for \mathscr{F}. To see this, let $x \in O \in \mathscr{T}$. Then for some integer $i, O \times O \cup \mathscr{C} c(x) \times \mathscr{C} c(x) \supset U_{i} \supset \cup\left\{O_{j}^{i} \times O_{j}^{i}: 1 \leq j \leq\right.$ $\left.n_{i}\right\}$. Then $x \in O_{j}^{i}$ for some j and $x \in O_{j}^{i} \subset O$.
5. $\mathscr{U}(\mathscr{G})$ a uniformity generated by equivalence relations.

LEMMA 5.1 Suppose that $A_{1} \times A_{1} \cup \cdots \cup A_{n} \times A_{n} \in \mathscr{U}(\mathscr{T}), A_{i} \cap A_{j}=\phi$ when $i \neq j$ and that $X=A_{1} \cup \cdots \cup A_{n}$. Then each A_{i} is open and closed.

PROOF. It suffices to show that each A_{i} is open. By theorem 1.2, $A_{1} \times A_{1} \cup \cdots$ $\cup A_{n} \times A_{n} \supset O_{1} \times O_{1} \cup \cdots \cup O_{m} \times O_{m} \supset \Delta$ where $O_{i} \in \mathscr{G}$. Let $x \in A_{i}$. Then $x \in O_{j}$ for some j. Thus $A_{i}=\left(A_{1} \times A_{1} \cup \cdots \cup A_{n} \times A_{n}\right)[x] \supset\left(O_{j} \times O_{j}\right)[x]=O_{j} \supset\{x\}$.

An equivalence relation E on a set X is termed of finite character iff $\{E[x]$: $x \in X\}$ is finite.

THEOREM 5.2 $\mathscr{U}(\mathscr{T})$ has a base of equivalence relations of finite character iff for each closed set E and each open set O for which $E \subset O$, there exists a clopen set C such that $E \subset C \subset O$.

Proof. Sufficiency. Let $X=O_{1} \cup O_{2}, O_{i}$ being open. Then $\mathscr{E} O_{2} \subset O_{1}$ and hence $\mathscr{E} O_{2} \subset C \subset O_{1}$ for some clopen set C. Hence $O_{1} \times O_{1} \cup O_{2} \times O_{2} \supset C \times C \cup \mathscr{E} C \times \mathscr{E} C \in \mathscr{U}$

Norman Levine

(\mathscr{T}). It follows then that each $U \in \mathscr{U}(\mathscr{T})$ contains a finite intersection of sets of the form $C \times C \cup \mathscr{C} C \times \mathscr{C} C$. Such finite intersections are equivalence relations of finite character.
Necessity. Let $E \subset O, E$ being closed and O being open. Then $O \times O \cup \mathscr{C} E \times$ $\mathscr{C} E \in \mathscr{G}(\mathscr{G})$ and hence $O \times O \cup \mathscr{C} E \times \mathscr{C} E \supset A_{1} \times A_{1} \cup \cdots \cup A_{n} \times A_{n}$ where $A_{i} \cap A_{j}=\phi$ when $i \neq j$ and $A_{1} \times A_{1} \cup \cdots \cup A_{n} \times A_{n} \in \mathscr{U}(\mathscr{T})$. By lemma 5.1, each A_{i} is clopen. Let $O^{*}=\bigcup\left\{A_{i}: A_{i} \subset O\right\} . O^{*}$ is clearly clopen; it suffices to show that $E \subset O^{*}$. Let $x \in E:$ then $x \in A_{i}$ for some i. It suffices to show that $A_{i} \subset O$. Suppose $A_{i} \not \subset O$; take $a \in A_{i}-O$. Then $(x, a) \in A_{i} \times A_{i} \subset O \times O \cup \mathscr{C} E \times \mathscr{C} E$. But $(x, a) \notin O \times O \cup \mathscr{C} E$ $\times \mathscr{E} E$, a contradiction.

COROLLARY'5.3 Let (X, \mathscr{F}) be compact and zero dimensional. Then $\mathscr{\mathscr { C }}(\mathscr{\mathscr { F }})$ has a base of equivalence relations of finite character.

The Ohio State University

REFERENCES

[1] John L. Kelley, General Topology, D. Van Nostrand Company, Inc., 1955.
[2] William J. Pervin. Foundations of General Topology, Academic Press, 1964.

