Kyungpook Math. J. Volume 13, Number 2 December, 1973

COMMON FIXED POINT THEOREM FOR SOME **BOUNDED LINEAR OPERATORS**

By Dae Hyeon Pahk

1. Preliminary and notation.

In [3], Markov and Kakutani had found what families of bounded linear operators have common fixed point property in a compact convex subset of a linear topological space.

In this paper, we shall find what families of bouned linear operators have common fixed point property in a weakly compact convex subset of a Banach space. First, we can easily see that the main theorem in [1] is the following form for bounded linear operator:

THEOREM. Let K be a weakly compact convex subset of a B-space. If $T: K \rightarrow K$ is a linear operator with $||T|| \leq 1$, then T has a fixed point in K.

On the basis of this theorem, we shall find the condition that some families of bounded linear operators has common fixed point in K.

We consider \mathcal{X} as a B-space with norm $\|\cdot\|$ and d as a metric in \mathcal{X} by d= $\|\cdot\|$. If \mathscr{F} is a family of mappings on \mathscr{X} , for each $x \in \mathscr{X}$, we denote $\mathscr{F}(x) =$ $\{Tx: T \in \mathscr{F}\}$. If $A \subset \mathscr{X}$ is nonempty, d(A) denotes the diameter of A with respect to d. If (*) is property, then a mapping T or a family \mathcal{F} of mappings on \mathcal{X} is said to have (*) iff T or \mathscr{F} has (*) at x for each $x \in \mathcal{X}$, \mathscr{F} has (*). iff each $T \in \mathscr{F}$ has (*). If $A \subset \mathscr{X}$ is nonempty, we denote by Co(A) the convex hull of A and $\overline{Co}(A)$ the closed convex hull of A. Unless otherwise, we shall follow the terminology and definition in [3]

2. Common fixed point theorem.

DEFINITION 2.1. Let $K \subset \mathfrak{X}$ be nonempty closed convex and \mathscr{F} be a semigroup with identity of mappings on K. For each $x \in K$, let $C(\mathcal{F}, x)$ be the smallest closed convex subset of K containing x which is \mathcal{F} -invariant (i.e. invariant under each $T \in \mathscr{F}$).

• . . •

Dae Hyeon Pahk

158

Then (i) \mathscr{F} is said to have convex diminishing orbital diameters (c.d.o.d.) at $x \in K$ iff either $\mathscr{F}(x) = \{x\}$ or there exist an $x_0 \in \operatorname{Co}(\mathscr{F}(x))$ such that $d(\mathscr{F}(x_0)) < d(\mathscr{F}(x)) < \infty$.

(ii) \mathscr{F} is said to have regular orbital diameter (r.o.d.) at $x \in K$ iff either $\mathscr{F}(x) = \{x\}$ or there exist $y, z \in C(\mathscr{F}, x)$ such that $\sup \{||y - Tz|| : T \in \mathscr{F}\} < d$ $(C(\mathscr{F}, x)).$

THEOREM 2.1. Let K be a nonempty weakly compact convex subset of $\mathcal X$ and $\mathscr F$

be a family with identity of linear operators which map K into itself satisfying the following properties: (1) $T\mathcal{F} = \mathcal{F}$ and $||T|| \leq 1$ for each $T \in \mathcal{F}$, (2) \mathcal{F} has r.o.d. in K. Then \mathcal{F} has a common fixed point in K.

PROOF. By weak compactness of K and by Zorn's lemma, let K_1 be minimal with respect to being a nonempty closed convex subset of K which is \mathscr{F} -invariant. Suppose there exist an $x_0 \in K$ and a $T \in \mathscr{F}$ such that $T(x_0) \neq x_0$. By minimality of K_1 , we must have $C(\mathscr{F}, x_0) = K$. Since \mathscr{F} has r.o.d. and $F(x_0) \neq \{x_0\}$, there exist $y_0, z_0 \in C(F, x_0)$ with $r_0 = \sup\{||y_0 - Tz_0|| : T \in \mathscr{F}\}$ $\langle d(C(\mathscr{F}, x_0)).$

Define $M = \{y \in K_1 : \sup\{\|y - T(z_0)\| : T \in \mathscr{F}\} \le r_0\}.$

Then M is nonempty as $y \in M$. It is clear that M is also closed and convex. We shall show that M is \mathscr{F} -invariant. Indeed let $T_1 \in \mathscr{F}$ and $y \in M$. Then $\sup \{||T_1y-Tz_0||: T \in \mathscr{F}\} = \sup \{||T_1y-T_1T'z_0||: TT'=T, T \in \mathscr{F}\} \leq \sup \{||T_1|||y-T'z_0||: TT'=T, T \in \mathscr{F}\} \leq \sup \{||y-T'z_0||: TT'=T, T \in \mathscr{F}\} \leq \sup \{||y-T'z_0||: TT'=T, T \in \mathscr{F}\} \leq sup \{||y-T'z_0||: TT'=T, T \in \mathscr{F}\} \leq r_0$. Hence $Ty \in M$, i.e. M is \mathscr{F} -invaluant. Hence M=K, by minimality of K. Next we define $N = \{z \in K_1: ||y-Tz|| \leq r_0$, for all $y \in K_1$, all $T \in \mathscr{F}\}$. Then N is nonempty as $z \in N$. Since each $T \in \mathscr{F}$ is continuous, N is closed. Convexity is clear. We shall show that N is \mathscr{F} -invariant. Indeed let $T_1 \in \mathscr{F}$ and $z \in N$. Then $||y-T(T_1z)|| = ||y-(TT_1)z|| \leq r_0$ for all $y \in K_1$ and all $T \in \mathscr{F}$, since $TT_1 \in \mathscr{F}$. Hence $T_1z \in N$, i.e. N is \mathscr{F} -invariant. By minimality of K_1 again, $K_1=N$. Since $r_0 < d(C(\mathscr{F},x_0)=d(K_1))$, there are $a,b \in K_1$ with $||a-b|| > r_0$. Since $I \in \mathscr{F}$, it follows that neither a nor b is in N, which is contradiction. Therefore T(x)=x for each $x \in K_1$ and each $T \in \mathscr{F}$.

DDEFINITION 2.2. $K \subset \mathcal{X}$ is said to have *normal structure* iff for any bounded convex subset H of K, if H contains more than one point, then there exists an

Common Fixed Point Theorem for Some Bounded Linear Operators 159

 $x_0 \in H$ such that $\sup \{ \|x - x_0\| : x \in H \} < d(H).$

COROLLARY 2.2. Let $K \subset \mathcal{X}$ be nonempty weakly compact convex and \mathcal{F} be a family with identity of linear operators which map K into itself satisfying the following properties: (1) $T\mathscr{F} = \mathscr{F}$ and $||T|| \leq 1$ for each $T \in \mathscr{F}$. (2) $\overline{C}_0(\mathscr{F}(x))$ has normal structure for each $x \in K$. Then \mathscr{F} has a common fixed point in K.

PROOF. We can easily see that $\overline{C}o(\mathscr{F}(x))$ has normal structure implies \mathscr{F} has

r.o.d. at x. Hence by theorem 2.1. above result follows.

COROLLARY 2.3. Let $K \subset \mathfrak{X}$ be nonempty weakly compact convex with normal structure and \mathcal{F} be a family with idenity of linear operators which map K into itself satisfying $T\mathcal{F} = \mathcal{F}$ and $||T|| \leq 1$ for each $T \in \mathcal{F}$. Then \mathcal{F} has common fixed point in K.

COROLLARY 2.4. Let $K \subset \mathcal{X}$ be nonempty weakly compact convex and \mathscr{F} be a family with identity of linear operators which map K into itself satisfying the following properties: (1) $T\mathcal{F} = \mathcal{F}$ and $||T|| \leq 1$ for each $T \in \mathcal{F}$. (2) \mathcal{F} has c.d.o.d. in K. Then \mathcal{F} has common fixed point in K.

PROOF. It is clear that \mathscr{F} has c.d.o.d. at x implies \mathscr{F} has r.o.d. at x.

REFERENCES

- [1] Hwei-Mei Ko, Fixed point theorems for point-to-set mappings and the set of fixed points, Pacific J. Math. 42(1972), 369-379.
- [2] Kok-Keong Tan, Common fixed point theorems for almost weakly periodic nonexpansive mappings, Proc. Amer. Math. Soc., 33(1972), 355-360.
- [3] N. Dunford and J. T. Schwartz, Linear operators, Vol. I, Interscience, 1964, 2nd edition.
- [4] K. Yosida, Functional anlysis, Springer Verlag, Berlin, 1965, 2nd edition.

.