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A POSITIVE LINEAR FUNCTIONAL ON AN ORDERED 

TOPOLOGICAL VECTOR LATTICE 

By J eong Dae Rim 

The basic properties of the I-summable class L1(I) on an ordered topologicaJ 

vector lattice has been studied by H. Anton and W.J. Pervin. Extending their 

methods in this paper, weare going to give some fundamental theorems which 
are the analogues for the positive functional 1 of Fatou's Lemma and the Lebesgue 
convergence theorem for the ordered topological vector lattice in ~ 2, and consid

ered the uniqueness of 1 in ~ 3. 
Finally we introduce two kinds of measurabiIity on the ordered töpological vector 

lattice and then establish an ‘mplicational relation between them. 

S 1. Prelirninaries and notations. 

We shall introduce terminologies and notations. Let E be a fixed ordered 
topological vector lattice with the real field throughout this paper. A non empty 

subset L of E is called integration lattice if L is a vector lattice and for every 

aεE there exists an element aεL' such that a드ft. If L is an integration lattice, 
‘a positive linear functional I:L .R is called ari elementary 써tegral if I(an)• O 

whenever {an} is asequence in L such that an • o with respect to the vector 

space topology. For simplicity we will assume that L is a fixed integration lattice 

‘ 'on an ordered topological vector lattice E , and that 1 is an elemental‘ y integral 
Qn L. The positive cone of E wiIl be denoted by P. A point aεE will be calIed 
an upper element if there exists an sequence {an} in L such that an • a_ The 

dass of all upper elements will be denoted by U. From the continuity of the 
linear and lattice operations it is obvious that the class U is a vector lattice and 

that 1 is well-defined on U. We can extend 1 from L to U by defining I(x)= 

lim I(x,,) , where' {xn} is any sequence in L such that Xn i X. 
11_00 

It folIows from the second condition of the integral lattice that 1 is finite 
valued. It is also easy to see that I(a+b)=I(a)+I(b) and I(!w)=kI(a) for real 

k르o and a, b in U. Here we shall prepare the following theorem which has been 
proved by H. Anton ánd W. J. Pervin [1]. 
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THEOREM 1. 1. (i) 1 is monotone and sl서ctly positive on U. 

(ii) 11 {a ,,} is a sequence in U such that an • a, then aEU and l(an)• l(a). 

Now define -U by -U= {XEEJ-xεU}. 1t is easy to show that -U is a vector 
lattice and that xεU iff there exists {xn} in L such that xn • x. If aε-U, we define 

l(a) by l(a) = - 1( -a). This definition extends 1 as a monotone and strictly positive 

functional from U to UU -U and for a, bε -U and real c는0， we have l(a+b)= 

l(a)+I(b) and l(ca)=cl(a) , further, if anε-U and an • a, then aε-U and 

l(an)• l(a). H. Anton and W. J. Pervin also introduced the following definition 

in [1) • 

. DEFINITION. 1. 2. An element a in the topological vector lattice E is said to be 
l-sμmmable if given any e>O there exists a pair of elements yε-U and zεU 

such that y드a드z with l(z)-I(y)<e. 

The class of l-summable elements will be denoted by L1(I), the following 
remarkable .fundamental results for the l-summable class Ll(I) has been proved 
by H. Anton and W. J. Pervin [lJ . 

1 
THEOREM 1. 3. (i) 11 aE L~(I) then sup {I(y) Iyε -U, Y르a} =inf {[(z) J zε U, 

a<z}. 

Oi) For each aεL1(I)， il we put J(a)=sup{[(y)IYε U, Y드a} then J(a)=[(a) 

lor each aε UU-U. 

(퍼i) Lζ UC E , and Lζ Ll(I) 

Ov) Ll(I) is an 쩌tegration lattice and [ is a strictly positive lunctional on L1(I). 

DEFINITION. 1. 4. A topological vector lattice is said to have the monotone 

convergence ψroperty if every monotone increasing sequence which is bounded 

above converges. 

THEOREM. 1. 5 (Monotone Convergence Thoerem). [1 E is a topological νectoγ 

lattice with the monotone convergence property, and il {an} is a seqμeχce in Ll(I) 

sμch that.aη • a, then aEL1(I) and [(aχ)→[(a). 

COROLLARY. 1. 6. 11 E is a topological vector lattice μ，Uh the monotone convergenτe 

proφeγty， and zJ {an} is a seqμe%Ce j% Li(I) sμch that an• a then aEL\I) and 

l(aη)→I(a). 

COROLLARY. 1. 7. Ll(I) is a complete lat#ce. 



/ 

A Positive Linear Fu"ctional on an Ordered Toþological Vector Lottice 135 

~ 2. Sums and Fatou’ s ]emma in L 1(I). 

By using the linear, topo10gica1, and 1attice structure of in the Daniell method 

ofintegration for rea1 va1ued functions on a set D, a l-summab1e theory for 

topologica1 vector lattice will be developed in this section. From now on we 
consider the ordered topo10gica1 vector 1attice E with the monotone convergence 
property. An open prob1em is to characterize those ordered topo1ogica1 vector 

1attice with the monotone convergence property. 

LEMMA. 2. 1. An element e 쩌 P belong to U if and only if there is a seqμence 
00 C。

{an} 싫 pnusμck that e= E. Gn• ln this case l(e) = E ,I(Gn). 
n=1 

t 

PROOF. If we set E Gb=bM , then ι EL for k=l , 2,‘ …, n, since L is a linear k=l..... ,,, 

subspace of E , and bn • e, by the Theorem 1. 5. 80 the “ if" part is trivia1. On the 

other hand, 1et e be in P and b n • e with bn ε L. Without 10ss of generality we 

may assume that each bn is in P by settingbn by bnVO. Set G1=b1’ %=b” -bκ-1 c。

for n> 1. Then e= E a
M ’ and by the Monotone Convergence Theorem we have 

n=l 
,. 

n n 0。

l(e) =파n I(bn)=lim 1(4 ak)=파n ε I(a상=z I(ak). 
n→∞ k=l π→∞ k=l 

.. 
k=1 

‘ 

For an arbitrary element e in E we define the upper e1ementary integra1 1 

by setting l(e)=inf {I(a)la르e， a E U} , where we adopt the convention that the 

infimum of the empty set is +∞. 

by setting l(e)= sup{I(a)la드e， 

direct1y from the definition of 1. 

We define 

aε -U}. 

the 10wer elementary integra1 1 
The following Lemma follows 

00 0。

LEMMA. 2. 2. Let {et} be a seqχe1Zce in P , and let e= E e ... Tken l(e)드E l(eu )
‘ 

n=l ” 

”=1 ” 

PROOF. If 1(강)=∞ for some n, we are done. If not, given e> 0, there is an 

element μ ε U such that κ=μ and I(jn)드l(en) +e.2-n
• 8ince each jn is in P , 

Lemma 2.1 implies that the element j= E μ is in U and that I (j)= 오 I (jn) 
。。

드 E l(en) +e. Since j 늘 e, we have l(e) 드E l(e .. ) 十e， and the lemma follows 
n=1 ” 

since e was an arbitrary positive number. 

PROPOSITION 2.3. Let {en} be an increasz'ng sequence of elements in L1
(I), and 

let e= Iim en• The1Z e ε L1(I) if and only if 1im I(en) <∞. In this case 
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l(e) = lim 1(8,,). 

P :R.OOF. Sinçe (J>e~， J(8)늘1(8，，). Thus if lim 1(8，，)=∞， then 1(e)=∞， and 
。。

e 줄 L1(1). Suppose lim l(e,,) <∞. Set j=e-e1. Theni>O, andj=ε(e"+1-e，，). 
11.=1 

00 0。

Hence by Lemma2. 2, 1(i)드~1(e，써’e，，) = ~ l(e,,+ 1) - 1(8,,) ;::lim l(e,,).- l(e1) ”=1 n=1 
Thus 1(8)=1(81+i)드 1(81)+1(j)드 lim l(e,,). Since 8"드e， we have 1(e)늘1(8，)， 

and so l(e)는lim 1(8,,). Thus 1(8)=I(e)=I(e)=lim l(e,,). 

THEOREM 2.4. CFatou’s Lemma). Let {e"l be a sequence in P n L1(1). 

Then the elementinf 8" t's iiκ L1(l), and thfJeJement 끄핀 e" is in' L1(1) íf 

l쁘 l(e,,) <∞• ln this case 1(핀 e，，)되쁘 l(e,,). 

PROOF. Let i ,,=81 ^ 82 ^…'" ^ e". Then {j"l is a sequence in P n L1
(1), which 

decrease to j=inf 8n• Thus -μ • -j, and since 1(-μ)= -I(jn)드0， we must 

have j ε L\I) by Proposition 2.3. To prove the' rest of the theorem, let 

k，， =inf{eklk르n}. Then {kn} is a sequence in P n L 1(1) which increase to 젠팍 감· 

Since j”드8" for κ드k， 파n 1(jn)득l뾰 1(8k) <∞. Hence 끄핀 ek eLl(I) and I델핀%) 
드 끄m !(8n) by Proposition 2.3. 

PROPOSITION 2.5. Let {8n} be a sequence of elements in L1(1) and. sμ:ppose that 

there t's an eleηzent j t'η L1(1) such that for all n we haνe le" I드j. Then if e= 

limeη， we haνe l(e)=lim 1(e,,). 

PROOF. The elements en+j are in P , and l(eη+j)르21(j). Hence by Theorem 
1 2.4, we have e+j in L~ (1) and l(e+j)되쁘 l(eη+j)=I(j) +끄쁘 I(e,.). Hence 

l(e)드liml(en). Since the element j-e" are also in P, we have l(j -e)=li프(j -eη) 

=I(j) -I끊 l(e,,). Hence IT퍼 l(en)드I(e) ， and so lim l(e,,) e:xists and is equal to I(e). 

~ 3. Extension of 1. 

It follows from Proposition 2.3 applied to {-en} that 

LEMMA 3. 1. lfe t's any element αlith I(e) fi쩌te， then the1’e is an element j in 

u U -U such that e르i anà l(e)=/(j). 

PROOF. Let e be any element with I(e) finite. Then given n we can find 

μ ε U such that e=j" and I(jn)<l(e)+~. Setting kn=h^h^ ... ̂ j"’ we have 

e드kn드j"， and so {kn} is a decreasing sequence of elements in U with 1(e)드 
、

‘ 

‘ 

• , 
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l(kn)르 l(e)+~ •. Hence the element k=lim kn is in UU -U while e드k and l(ey. 
=1(k). We have thus established the lemma. 

DEFINITION 3. 2. An element e is called 찌'1 if e르Ll(I) and Ihel)=o. 

If e is a null element and /j / 드e， 0:드1 (/j/)드 1( /j /)드l(e)=O. Hence j ε L1(1). 

and j is a null element. 

PROPOSITION 3.3. An element e is in L 1(1) if an,r.l (Jnly if e t's. (he dtfferen,ce' 

j-k of' an eleηzent j in U U -U anci a n.μII element k in P. An elemen,t k is a nμII ’ 

element if and only if there is a null element 1 z'n U U - U such thqt /j / 드1. 

PROOF. If e=j-k. then e is the difference of two elements in Ll(1) and so, 

must itself be in L 1(1). If /j / 드 1 with 1 null. then j is a null element. If e is, 

in L1(1). then Lemma 3. 1. asserts the existence of j in U U ...... U such that 

e드j and l(e)=I(j). Hence k는j-e is an element in P and l(k)=O. makiI1g k' 

a nu11 elemant. If k is a null element. then by Lemma 3. 1. there is an
element 1 in U U -U with /j/드1 and 1(l )=I(/k/)=O. 

PROPOSITION 3.4. Let 1 be an elernentqry integral Qn (l Vκctot- lattz·ce L aη4 le.t 

J be an elementary integral on a vector lattice D 그 L. lf l(e)=J(e) for fJlI e ε 

L, then d(1) 그 Ll(1) and l(e)=J(e) for all e ε L1(1). 

PROOF. By applying Proposition 2.3. twice, we see that U U -U C' D1(1), 

and that l(e)=J(e) for e in U U -U. Hence by the second part of Proposition: 

3.3. , each element which is null with respect to 1 must also be null with respect 

to J. By the first part of Proposition 3.3. , every element e in Ll(1) must be' 

in D
1
(1), and l(e)=J(e). 

~ 4. 1 and L-measurabiIity on L 1C!). 

We now turn our attention to the 1 and L-measurability on the l-summable 

class L 1(1). 

DEFINITION 4.1. For an element e in E , e is said to be l-measμrable if e^a iSc 

in Ll(1) for each a in L. 

DEFINITION 4.2. For an element e in E , e is said to be L-measurable if 

sup {1(a)/a드e， aε -U)=inf {I(b)/b는e， bεU}. 

THEOREM 4.3. lf an element e in e z's 1-ηzeasu1’'able， then it is L-ηzeasurable. 

PROOF. Since we always have 

\ 
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sup {I(a)la르e， a ε -U}<I(e)드inf {I(b)lb는e， b ε U} ， 

we see that e is L-measurable if 

sup {I(a)la르e. a ε -U} 르 inf {I(b) Ib는e， b ε U}. 

We assume that for each a in L , a^ e in L1(I), i. e. for arbitrary e>O, there 

exist y ε -Uandz ε U such that y르 e^a드z with 0드I(z) - I(y) < e. 

There may be two cases for any element e. 

Case 1: y르e^a르e드z. In this case y르e르z. we have 0드I(z)-I(y)<e. Hence 

I(z) <I(y)+e, and so inf {I(s)ls는e， s ε U} 드I(z)<I(y)+e. From the monotonity 

of 1. inf {I(s)ls는e. SEU}-I(y)능O. This means that 0三 inf {I(s) Is르e. s ε 

U} -I(y) <ε. Analogously inf {I (s ) 1 s르e， s E U} <sup {I(y) 1 y드e. yE -U} +e. 

Hence inf {I(s)ls는e， s ε U} 三 sup {I(y) Iy드e， y ε - U}. 

Case 2: y드e^a르z<e. Since for any a in L , e^a ε Ll(I) the element e itself 

must be in L1(I). Hence there exist s in -U, and t in U such that s드e드t with 

O드I(t)-I(s)<e. i.e. I(t) <I(s)+e where t ε U, e드t. Therefore inf {I(l) 1 e드!， 

l ε U} 드 I(t) <I(s)+e, and 0 르 inf {I(t) 1 e 드 t, t ε U} - I(s)<e. Analogously 

inf {I(t) 1 e.드t. tEU} < sup {I(s)ls드e， s E U} +e. Hence inf {I(t) 1 e드t， t E U} 르 

sup {I(s)ls드e， s ε - U}. 

THEOREM 4. 4. If 1 is an infi쩌te!y ^ -distrz'butz've, ^ -assoâatz"ve !attz'ce 

homomorþhism, and e is L-ηzeasurab!e， then it is 1 -measurab!e. 

PROOF. Assume that sup{I(a)la드e， a E -U} =inf {I(b) 1 b르e， bEU}. We have 

sup {I(a ^,x) la^x드e^x， a^x ε -U} =inf {I(b^x) Ib^x르e^x， b^x E U} 

for an arbitrary (but fixed) element x in L. 

If I(x)=O, then x=O and a^x=O for a르0， e^x=a for a<O. Hence a^x is in 

L1(I). Suppose I(x)낯O. From the above equation we have 

sup {I(a)^I(x) lal\X드e^x， a^xε-U} =inf {I(b) ̂ I(x) Ib^x는e^x， b^xεU}. 

Since I(x) is a constant real number, 

I(x) ̂ sup {I(a) la^x드e^x， a^x ε - U} =I(x) Ainf{I(b)lb^x는e^x， b^x E U}, 

and so sup {I(a) 1 a^x르e^x， a^xE -U}=inf{I(b)lb^x능e^x， b^x ε U}. 

By putting y=a^x, z=b^x. it is easy to see that y ε -U and z ε U. Thus 

we have sup {I(a)ly드e^x， a^x ε - U} = inf {I(b) 1 z 는 e^x. b^x E U}, 

where e^x is in Ll(I) for any element x in L. Since a ^ x 드 x^x 드 !J 1'-, x with 
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I(b ^ x)-I(a ^ x)<e. by the assumption. e is I-measurable. 
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