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ON A CHARACTERIZATION OF SPACES OF CONSTANT HOLOMORPHIC 
CURVATURE IN OF GEODESIC HYPERSPHERE 

By Shun-ichi Tachibana and Toyoko Kashiwada 

Introduction. Let M n be a Riemannian space of positive definite metric and 0 

its point. We denote by s the geodesic distance from. O. Then M n is called 

harmonic at 0 if the Laplacian /J.s is a function of s only in a neighbourhood of 

O. If M n is harmonic at any point, it is called harmonic. M t‘ is harmonic at 0 

if and only if the mean curvature of each geodesic hypersphere of center 0 is 

constant (Cf. !ì 2). A space of constant curvature and a space of constant 

holomorphic curvature are examples of hannonic Riemannian spaces. Thus the 

geodesic hypersphere in these spac8s is expected to have more special properties. 

The discussions in this papar are local and the differentiability is of C∞. As to 
notations we follow Y ano-Bochner [1] with trivial changes. 

1. Normal coórdinates. Consider an n dimensional Riemannian space Mη with 

positive definite metric gη. Let 0 be a point of Mη and {x
z
} a nonnal coordinate 

of origin O. The coordinate {x
z
} is an allowable coordinate satisfying 

(1.1) ggjX1= (g서)0심， 

where gij and (gij)O denote the metric tensors at (x
z
) and 0 respectively, [2J. 

Let U be a coordinate neighbourhood where {x
z
} is valid. A curve in U which 

goes through 0 is a geodesic if and only if it is written as 

(1 .2) xz=Fs 

where S is the arc len얄h measured from 0 and ~Z are constant such that 

(1.3) (gij)d웅떻=1. 

We take U so small that any point (x
z
) in U is connected with 0 by a unique 

geodesic in U. Then any point in U has the representation (1. 2) with t and s a s. 

parameters, and conversely 한 and s are regarded as functions of (x깐. 

From (1 .2) and (1.3) it follows that 
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(g섬oxix1= s2. 

Operating 야=0/0상 to this equation and putting Sk=OkS, we have 

(1. 4) (gik)oxt = ssk· 

Hence SSk=giki follows by virture of (1. 1) and we can obtain 

(1 .5) s싹=1， (sz=gzkSk)· 

The last equation shows that SZ is a unit vector field in U with singularity at O. 

By the covariant differentiation of (1.5) we have 

(1.6) sZVj펴i=O. 

Now. let {xt
} under consideration satisfy 

(1.7) (gij)O= δej· 

It is known that such a normal coordinate always exists. We shall use 화 instead 

()f 용Z in such a coordinate. 

From (1.4) and (1.7) we have 

(1. 8) xk=중é=SSk’ 

(1.9) 잃=Sk. (s~O). 

Operating Oj to (1.8) we get 

δjk=달Sj+SÒj용k 
.and taking account of (1.9) we obtain 

(1.10) 짧=삶=놓/1jk’ 
where 

(1.11) /1jk=~k-Çj 앓=삶-펀월· 

It is easy to see that the following equations 

(1. 12) 
/1ij=신， 마1 힘=0. 

AijAlk= Aik’ Aiz=% -1 

.are valid. where the repeated indices are taken to sum from 1 to n. 

Consider a space M n of constant curvature with the sectional curvature k= 

::J::. Z2. 1 being a positive constant. Let 0 be any point and take it as the origin of 

.a norrnal coordinate satisfying (1.7). Then it is known [3) that the metric tensor 

gij at xz=흙S is given by 
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(1.13) gtj=않:i+rAij’ 
￦here r is a function of s defined by 

(1 .14) r(s) = 

( sinCls) \2 
ls J' 

뺀만젠、2 
ls 

if k=l2, 

, if k= -P. 
If we denote dr/ds by γ. the ChristofÏel symbols are 

(1.15) 삶 = (관ζ-짚)웹k+꽃떡ßik+달A서) 
;and we can get the following equation: 

(1.16) 와Sj= \좋+핑 ßjk. 

2. The geodesie hypersphere. Consider a hypersurface Mn
-

1 in a Riemannian 
i/ 1 n-1 

-space λr and let x. =x.(μ , ---, μ ) be its local expression. where {x.} and {μ } 

n .... .. n-l 
,denote local coordinates in M" and M"-L respectively. We make a convention 

that Latin indices a. b. … take valu않 from 1 to n-1. If we put Baz =싫/싫， 

then the induced Riemannian metric ' σ of M n
-

1 is written as 5 ab 

/gab = BazB;gij· 

If we write by N Z the unit normal (local) vector field. 

걱satisfy 

NzNi=1, BJNz=o. 

then NZ and Nz=gzJN1 

Denoting the inverse matrix of (’gab) by C' gab). let us put 
‘ 

b , _ab 
B J=rg Ba gi1· 

lt is known that the matrix (B
a
i• N i) is the inverse matrix of (Ba

z
• N

Z
) and 

Q 

hence 

(2.1) E℃Baz=쉰 -NjNZ 

hold good. 

Let 'ïla be the operator of (generalized) covariant differentiation along M"-1. 

By definition. we ha ve 

FaBJ=8cBJ-/{&}B2+BJEf{;}. 

If X i is a covariant vector field in M". it holds on M
n

-
1 that 'ïlaXi=B;'ïl jXi• 

'The Euler-Schouten tensor Hαbl is defined by Habz= 'ïlaBbz. As is well know:r.. t Ì1ere 

’ 
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exists a tensor H ab such that 

(2.2) Haba=Habr. 

n-1 Hab is the second fundamental tensor of M"-. and the mean curvature H is the 

scalar function defined by 

H=-프τ」gabHab 
12-1 - _0 

n ..,- 1 If Hab=H'gab is valid identically, M""'-. is called totally umbilic. If Hab vanishes 
-1 identically, then M"-. is called totally geodesic. 

Now, let 0 be a point of M" and U a domain where a normal coordinate {x
z
} 

of origin 0 is valid. Suppose that e is a positive constant so small that the set Sê 

of points (웅상 is contained in U. Se is called a geodesic hypersphere at 0 of 

radius ε. 

As Se is a hypersurface, if {u
a

} denotes a local coordinate in Se’ 

s(x\ua))=e ~ 

holds good on Se locally. Operating Va to this equation we hav:e 

(2.3) 야한=0. 

Thus SZ is a normal vector field of So’ and by (1. 5) it being unit we may take 

Ni as 
(2.4) Ni=-한· 

If we operate Vb to (2.3) and take account of (2.2) and (2.4), 

(2.5) Hab= Ba iBb 1R7iSj 

which is the key equation in this paper. 
From (2.5) it follows that 

(%-1)H=As (=gZ1FiSJ) 

we can get 

by virtue of (2.1) , (2.4) and (1.6). Consequently, we know that a Riemannian 

space is harmonic at 0 if and only if the mean curvature of each geodesic hyper­
sphere at 0 is constant. 

3. Spll.ces of constant curvature. Let M n be a locally flat Riemannian space 

and 0 any point of M. Then there exists a normal coordinate system {앙} of 

origi l1 0 such that gψ = δ'ij" Consider a geodesic hypersphere Sε at 0 of a small 

radius e. The induced metric of So is 
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(3. 1) fgab=BaZBJ칩=BJBbz. 

As wehave 

FzSj=aiSj=놓A서 
by (1. 10), it folIows that 

B;BJFt한=놓BJBJA떼=좋 ’gab 

taking account of (2.3) and (3. 1). Thus (2. 히 gives Haõ=좋 ’gab which shows 

that Se is totally umbilic. 

Next, let M n be a space of constant curvature K (:;é0). we take a point 0 

arbitrary and consider a normal coordinate {x
z
} of origin 0 satisfying (1.7). 

Then, for any geodesic hypersphere Sε at 0, we have 

Hab=강BJ돼=(좋+꽁) BaiB싫 
by virtue of (1. 16). On the other hand, the induced metric of Se is 

’gab=BazBJgtj=BazBJ(용앓j+rA서) =rBJB;A젠 

on taking account of (1.9) and (2.3). Hence we obtain 

which proves the following 

Hnl= !-L+-Z’ 
aO\S'2r ’ gab 

THEOREM 1. In a space 01 constant cμ7νatμre， each geodesic hypersPhere at any 

point z's totally uηzbiUc. 

4. The eonverse probIern. Consider an Einstein space Mn (n>2) and we assume 

that each geodesic hypersphere at any point is totally umbilic. Let 0 be any 

point of M
n and {상} a normal coordinate of origin o. As each geodesic hypersp-

here Se is totally umbilic, 

(4.1) Hab=a 빌b=αBJB;gji 
holds good on each Se. If we substitute (2.5) into (4.1), it follows that 

BJBJ(Vj한 -αgji) =0, 

and taking account of (2. 1) we obtain 
(4.2) Vli=a(gji-안Si). 

Thus it follows 

gJZV,.si = (n -1)α， 
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from which we know that α is a function of (x'). 

If we differentiate (4.2) covariantly, we have 

\1k\1l i= αk(gji-한Si)-α2(gkjS， +gki힘 - 2Séli)' 

where αk=따α. Substituting the last equation into the Ricci’s identity: 

(4.3) FKF1Si -FjFKSi= -s7Rrijk· 

we get 

(4.4) -srRr 댐=αk(g1i-sFz) -αjCgki- s굵J -a2(gkt한-gitS상· 
Transvecting (4.4) with g'z we have 

(4.5) -SrRrk= (n-2)αk+(stai) Sk+(%-1)a2Sk· 

On the other hand, the Ricci tensor is of the form R
r k=(n-l)kδJ by the 

assumption, 

(4.6) 

where k is a constant. Hence (4.5) becomes 

(n-2)αk+(siαi)sk+(n-l) (α.2+k)Sk=0. 

Multiplying l and taking account of (1. 5) we have 

s1ai= - (α2+k) ， 

and substituting this equation into (4.6) we get 

ak=-(α2 +k)Sk' 

Thus we obtain from (4.4) 

(4. 7) SrRrijk=k(gjiSk-gkiSj)· 

Now, let z" 핸 be the concircular curvature tensor defined by 

zhijk=Rhijk-k(δkhg6i-δihgki)， 

then (4. 1) is written as srZr ijk=O or 

(4. 8) xhzh핸=0. 

Let us consider a geodesic xh=망s. From (4. 8) 양'Zhijk=O are valid on the geodesic 

except 0 and by the continuity we get 양(Z hijk) 0 = O. As t are arbitrary and 0 is 

any, we know that Z hijk vanishes identicaIIy. Thus M
n is of constant curvature 

and hence we have proved the foIIowing 

THEOREM 2. In an n(>2) dimensional Einstein space M n, il each geodesic 

hypersPhere at any point is totally umbilic, then Mn is a space 01 constant cμrvatμre. 

t 
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5. η-urnbiIic hypersurfaces in a K갑hlerian space. Let M 2m be a Kählerian 

space. i. e.. a 2m( =n) dimensional Riemannian space which admits a paralleI 

tensor Fi h caned the compIex structure such that 

FrFf= -쉰， FirFjgrs=gi1‘ 

2m-l. .. .2m .. '1 • .... i Consider a hypersurface M~'''-L in MWu, and let N' its unit nonnal ClocaI) vector 

fi려d. If we define ηa by 

(5.1) %=BJFfNh’ 

장，-1 -.1. _ .,2m-l it has a meaning over M""'-L within sign. M ",m-L is called totally η-umbilic if 

Hab= α /gab+βηaηb 

holds good for some scalar functions a and β. 

A Kählerian space M2m is called constant holomorphic curvature. if its curv­

ature tensor satisfies 

Rhijk=k(ghkgij-ghjgik+F샤Fik-FhjFik녕FhiFj~' where Fij=F; grr 

In this section we prove the following 

THEOREM 3. In a sþace 01 constant holomorphic curvature. each geodεS ’ 

sphere at any point is totally η-umbiUc. 

PROOF. Let 0 be a point in a space of constant holomorphic curvature M 4m 

of non-zero k. It is known that M 2m admits an allowable complex coordinate 

{z~} of origin 0 such that the metric tensor is given by 

ga，하=솥(Sδaß-2kz'뺏， gaß=gtI*ß"=O. 

where za- means 얄. the complex conjugate of za. and 

(5.2) S=1+2ku. aa‘ u=z z • 

(Greak indices a. β. …, λ， μ. … run from 1 to m. and α*=a+m. 

L:::. zazQ싸). 쉰 are given with respect to {l} by 

gaß‘=S(δaß+2kzaz하)， gaß=i하R‘=0. 

The Christoffel symbols are zero except 

α 2k ,. '" a_8‘ β (5.3) r = ---『(δ ZP‘ +δ Fz >
β r S ,- r -

and their complex conjugates Tß*tI*r*' 

Now. 1 being a positive constant. let us put 

a αf 

u=z z .. means 
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, 
, 

n4 

n
ι
 

l 

」
，

{ -­ι
κ
 

if k>O. 

if k<O. 

Then it is known [4] that in a neighbourhood of any 0 point (t선 is represented as 
À .À (5.4) z l1.=Al1.tan(ls), or 
À .À zl1.= A l1.tan(ls) 

according as k>O or k<O, where s d~notes the distance from 0 to (i) and AÀ are 
complex numbers such that 

(5.5) 2Z2AÀ표A=1. 
Henceforce we shall consider only the case k> 0, because the calculation of the 

case k<O is similar. 
From (5.2), (5.4) ånd (5.5) we have 

2 λ À* 2 S=1+2rz"z" =sec"'(ls), 

and by differentiation with respect to za we get 

(5.6) Zα
률

=λsa’ 
￦here we have put 

λ= } sec2(ls)tanCls) = 좀tan(싫). 

From (5.6) it follows that 

aβsa= -saa냉ogÀ.， 

8띤a=츄δgg-Saa바logÀ.. 
Substituting into the last equations 

aßlog À.= 김*sr(3S -2)sg, 

we have 

8βSa= -μ(3S:-2)sasß' 

aß*sa=μ {운δ'aß - (3S - 2)sas에 , 
where μ is defined by 

μ=cot(ls). 

Thus we can get taking account of (5.3) and (5.6) 
(5.7) VβSa=μ(S-2)saSß’ 

Vß률Sa=μi운싫-(3S-2)sas에 . 
Now we consider the real coordinate {상} which is associated to {z'} by 상=상 
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+ix싼. Then (5.η is written with respect to {i} as 

(5.8) Vi한=μ(g서-si한)+냉i판， 

where we have put 

ν= -1 tan(ls). 판=F상. 

As (5. 8) is a tensor equation. it is still vaJid in any allowable coordinate {상}. 

Hence we may regard {상} as a normal coordinate of origin o. Let Se be a 

geodesic hypersphere at 0 and we follow the notations in S 2. From (2.5) and 

(5.8) we have 

(5.9) Hab= BaiBJFzSj= μ /gab+때aηb 

taking account of (1.6) and (5.1). Consequently Se is totally η-umbilic. which 

proves the theorem. 

We remark tnat tl and )) in (5.9) satisfy μ))= -k. 

6. The eonverse probIem. In this section we shall see the following theorem 

to be valid. 

THEOREM 4. In an Einsteln-Kählerian space M 2m (m>l) , if each geodesic 

hypersPhere at any point 0 satisfies 

Hab=μ , gab+J./Tlaηb 

2m 
for some functions μ and )) such that μ))=constant. then M

wm 
z.s a space of constant 

hololηorphic curvatμre. 

PROOF. Denoting by {xt
} a normal coordinate of origin 0, we follow the 

notations in ~ 2. For each geodesic hypersphere at 0, we have from (2.5) and 

the assumption 

(6.1) BJBJ(P필 -μgji-ν젤i)=O. 

Transvecting (6.1) with 합d， and ta퍼ng account of 작= -Fji and (1.6). we 

get 

(6.2) VjSi=μ(g;i- S，，si) +ν§3--JZ ~J 

As (6.2) holds good on each geodesic hypersphere at O. ￦e can easily see that μ 

and )) are functions of (xz) in a neighbourhood of O. If we differentiate (6.2) 

covariantly and make use of (6.2) itself. it follows that 

Fk?1Sz =μk(g떼 -si한)-μ2(Sjgk+Sig하-2Sks/li) 
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+ν흙j§i -u2살(챙t +§jSi) 

-μν(§kSj§i+§갈jSi-Fjk판-Fik§1+2Sk§잭i). 

Substituting this equation into the Ricci’ s identity (4.3), we have 

(6. 3) -SrRr ijk= uk(gaj - siS1) -μj(gik - szSk) 

- u2(펀!fki-S~ji)+판())살j -ν연k) 
‘iν25i(5kSj -5jSk) 

+2μνFjk한+Fik판-F삼j-힐(5광-하S1). 

If we transvect (6.3) with gη and take account of 

(6.4) Rr=Cδr 
k -- ..... k ’ 

C being a constant, it fol1ows that 
i . / .. , 2. 2 1 ,... "" _ i. (6.5) -Csk=(n-2)μk+ {s 만+(η-1)μ +ν +2ttν} sk +))k -siv'sk. 

Multiplying (6.5) by l , we get 

(6.6) -C=(%-1)(siμi+μ2)+i+2μp十Si칸 

and multiplying 옆=gkj5j to (6.5) we have 

(6.7) (n-2)μ설k=o. 

On the other hand, it is known that the curvature tensor of a K합hlerian 

space satisfies 

(6. 8) 2FitRJ= F1kRT ijk 

Hence if we transvect (6.3) with pik and make use of (6.8), (6.7) and (6.4), 
it follows that 

Thus we get 

(6.9) 

/ . 2. 2 
-c판=ili+(S ν/+μ +))-+nμν) 판· 

2. 2 
μi=-(C+Sν/+μ +))-+nμu)si’ 

from which it follows that 

(6.10) i i. 2. 2 
-C=s‘μi+s‘칸+μ +ν +n.μ)). 

From (6.6) and (6.10) we can get 

stμi=u(u-u)， 

sZUi= -c-(”+1)μ))-ν2. 
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Consequently we have from (6.9) 

(6.11) μi=μ(1.1 -μ)Si 

and 

(6.12) νi= -ν(1.1 -μ) Si 

tak.ing account of μ1.1 = constant. 

finally shows that 

The substitution of (6.11) and (6.12) into (6.3) 

(6.13) SrUr1jk=0 

are valid, where we have put 

ur

핸=R
r

핸+μν(야gji-δIg힘+FJFji-F1rF힘-2F힘F낀· 

Now we apply the similar process as in S 4 to (6.13) and complete the proof. 
\ 
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