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Introduction. Let M” be a Riemannian space of positive definite metric and 0

its point. We denote by s the geodesic distance from 0. Then M" is called
harmonic at 0 if the Laplacian As is a function of s only in a neighbourhood of

0. If M" is harmonic at any point, it is called harmonic. M”" is harmonic at 0
if and only if the mean curvature of each geodesic hypersphere of center 0 is
constant (Cf. §2). A space of constant curvature and a space of constant
holomorphic curvature are examples of harmonic Riemannian spaces. Thus the

geodesic hypersphere in these spaces i1s expected to have more special properties.

The discussions in this papzr are local and the differentiability is of . As to
notations we follow Yano-Bochner [1] with trivial changes.

1. Normal coordinates. Consider an # dimensional Riemannian space M~ with
positive definite metric g, i Let 0 be a point of M~ and {#} a normal coordinate

of origin 0. The coordinate {xi} is an allowable coordinate satisfying
a j '
(1.1) gz.jxj=(gz-j)0x ;
where g;; and (,g'?:j)0 denote the metric tensors at (x’) and 0O respectively, [2].

et U be a coordinate neighbourhood where {xi} is valid. A curve in U which
goes through O is a geodesic if and only if it is written as

(1.2) xi=Eis
where s is the arc length measured from 0 and Ei are constant such that
iaf
(1.3) (g;6 6 =1

We take U so small that any point (xi) In U i1s connected with O by a unique
geodesic in U. Then any pomt in U has the representation (1.2) with S and s as
parameters, and conversely & and s are regarded as functions of (x)

From (1.2) and (1.3) it follows that
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1 72
(gij)ox X =S.

Operating 3k=6/3xk to this equation and putting s,=d,s, we have

(1.4) (gik)oxizssk.
Hence ss,= gikxk follows by virture of (1.1) and we can obtain
(1.5) sisi=1, (si=giksk).
The last equation shows that s' is a unit vector field in U with singularity at O.
By the covariant differentiation of (1.5) we have
(1.6) s’V s;=0.
Now, let {xi} under cénsideration satisfy

(1- 7) (gfj)0=5{j-

It is known that such a normal coordinate always exists. We shall use §; instead

of Ei in such a coordinate.
From (1.4) and (1.7) we have

(1. 8) xkzéks:ssk,

(1.9) E,=S5,. (s7#0).

Operating d; to (1. 8) we get
é‘jk-—:é'ksj-l—sajfk

and taking account of (1.9) we obtain
1

(1, 10) 5;'&:33:3;:-' S Ajpr
where |
(L. 11 D=0 —5; §4=0,— 5%

It is easy to see that the following equations

(1.12) A=y Bij ;=0
AiAjy= Ajp Byy=n—1

are valid, where the repeated indices are taken to sum from 1 to z.

. {4 . . '
Consider a space M of constant curvature with the sectional curvature &=

+[", [ being a positive constant. Let 0 be any point and take it as the origin of

.a normal coordinate satisfying (1.7). Then it is known [3] that the metric tensor

£;; at :c3=§-‘is 1S given by
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-where 7 1s a function of s defined by -

({ sin(ls) \2 e g g2
( 7s ) , if 2=1",
(1.14) 7(s)=¢
( sinh(/s) )2 e p— 2
\ [s ’ :
If we denote dy/ds by y’, the Christofiel symbols are
i o 1__.7, —_,:/,f o ?/!
and we can get the following equation:
(1.16) Visi= (- + =) A

2. The geodesic hypersphere. Consider a hypersurface M "=l in a Riemannian
space M” and let x'=2"Ca’, -, "~ ") be its local expression, where {*'} and {«°}
denote local coordinates in M and M n=l respectively. We make a convention

that Latin indices a, b, -+ take values from 1 to z—1. If we put szaxf/au“,

. " - - ﬂ—l » .
~then the induced Riemannian metric ‘g, of M is written as
r — i -:f
8265, By 84

If we write by N ‘ the unit normal (local) vector field, then N ‘and N =& ij

satisfy
N‘N;=1, B N,=0.

Denoting the inverse matrix of ('g,) by g™, let us put
b, ab 1
B .="2 B, g;.

It 1s known that the matrix (Bﬂz., N_.) is the inverse matrix of (B;, N i) and
hence

(2. 1) B°B'=0/-NN'
hold good.

Let V_ be the operator of (generalized) covariant differentiatior along M L

By definition, we have
VEB; = aa Bbi = {:b }B: T Baijk {.7;' } ’
If X, is a covariant vector field in M " it holds on M "~1 that V,X 3:5; VJ.X -

“The Euler-Schouten tensor H ﬂ; is defined by HE;:-V aB;. As is well known, there
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exists a tensor H , such that
- :
(2. 2) Hab*--*ﬂabN .

H, is the second fundamental tensor of M”z_1 and the mean curvature H is the

scalar function defined by

_ 1 , ab
H n—1 & H gy

n—1

If H,=H'g  is valid identically, M "~ is called totally umbilic. If H ,vanishes

n—1 .

identically, then M is called totally geodesic.

Now, let O be a point of M~ and U a domain where a normal coordinate {xi}
of origin 0 is valid. Suppose that € is a positive constant so small that the set S_

of points (Eiej is contained in U. S, is called a geodesic hypersphere at O of

radius &.
As S_ is a hypersurface, 1t "} denotes a local coordinate in S,

s(x (u®)) =¢

holds good on S, locally. Operating V, to this equation we have
o —
(2.3) B, s,=0.

Thus s’ is a normal vector field of S, and by (1.5) it being unit we may take

N . as
If we operate V, to (2.3) and take account of (2.2) and (2.4), we can get
ip
(2.5) H, =B, B, Visj

which is the key equation in this paper.
From (2.5) it follows that
(n—DH=As (=¢"V,s)
by virtue of (2.1), (2.4) and (1.6). Consequently, we know that a Riemannian

space is harmonic at 0 if and only if the mean curvature of each geodesic hyper-
sphere at 0 is constant.

3. Spaces of constant curvature. Let M" be a locally flat Riemannian space

and O any point of M. Then there exists a normal coordinate system {xi} of

origin 0 such that g,=0J;. Consider a geodesic hypersphere S, at 0 of a smallk

radius €. The induced metric of S, 1s
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(3.1) 'g.,=B B;a‘u B'B,’

As we have

1
Vz-sjzaz.sj— A..

. s =i
by (1.10), it follows that

P 1 ptpia __ 1 ’
'Ba'Bb Vz'sj_ S BﬂBb Aff_ s Sab

taking account of (2.3) and (3.1). Thus (2.5) gives H = i# ‘g,, Which shows.
that S, is totally umbilic. |

Next, let M" be a space of constant curvature K (#0). we take a poiilt 0

arbitrary and consider a normal coordinate {x} of origin 0 satisfying (1.7).
Then, for any geodesic hypersphere S, at 0, we have

| H =B, B)V;s;=(L+Z_)B,B}A,
by virtue of (1.16). On the other hand, the induced metric of S, is
""B Bbggj"'B B}(E‘f +7.A ) Y-B 'B;Az'j
on taking account of (1.9) and (2.3). Hence we obtain

Hab_(

?,) ’gab

which proves the following

THEOREM 1. Iz a space of comstant curvature, each geodesic hypersphere at any
point is totally umbilic.

4. The converse problem. Consider an Einstein space M” (#>2) and we assume
that each geodesic hypersphere at any point is totally umbilic. Let 0 be any

point of M and {z'} a normal coordinate of origin 0. As each geodesic hypersp-
here S, is totally umbilic,

Y ipt
(4.1) H,=a 'g,=aB b g,

a

holds good on each S If we substitute (2.5) into (4.1), it follows that
J-B;(Vjsz' — ag ]i) — O:
and taking account of (2.1) we obtain
(4.2) Visi=alg;;—ss;).
Thus it follows

g/ iVﬁz‘ =(n—1e,
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from which we know that a is a function of (xi).
If we differentiate (4.2) covariantly, we have
Vkvjsz.:ak(gﬁ—s s) o (8';3,3 —I—gkzs —2s s.sz.),

where a,=0d,a. Substituting the last equation into the Riccr's identity:

(4- 3) V V s _V Vksi_ _SYR ijk"
we get |
2
(4.4) -—-srRrijk——-ak(gﬁ—sjsi)—a’j(gkf;—-sksi)—a' (g;n' f— ,ffsk)'

Transvecting (4.4) with gj * we have
(4.5) —srR’k= (n—z)ak-l—(szaz.) sk-l-(n—l)a'zsk.
On the other hand, the Ricci tensor is of the form R »= (n—1)k0 kr by the

assumption, where £ is a constant. Hence (4.5) becomes

- (4.6) (n—2et,+(s'ex)s, +(n—1) (+E)s,=

Multiplying s* and taking account of (1.5) we have
| sia'£=—(a2+k),

and substituting this equation into (4.6) we get
a,= -(cxz—l-k)sk.

‘Thus we obtain from (4.4)

r
Now, let z" ik be the concircular curvature tensor defined by
k h h k
Z z'jk:R z‘jk_k(ak gij_-gj & pil»

then (4.1) is written as err ii .&:0 or

(4.8) X mek

Let us consider a geodesic xh=$ s. From (4. 8) S" Ly

;=0 are valid on the geodesic

except 0 and by the continuity we get E" (Z kz-jk)0=0. As 5" are arbitrary and O is

any, we know that Z Hijk vanishes identically. Thus M~ is of constant curvature

and hence we have proved the following

THEOREM 2. In an n(>2) dimensional Einstein space M, if each 'geodesic
hypersphere at any point is totally umbilic, then Mn s a space of constant curvature.
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5. p-umbilic hypersurfaces in a Kihlerian space. Let M " be a Kihlerian
space, i.e., a 2m(=mn) dimensional Riemannian space which admits a parallel

tensor I z-k called the complex structure such that

Y R h y S
F,F =—0,, F,F. g =g

2m—1 .

Consider a hypersurface M in M“" and let N* its unit normal (local) vector

field. If we define 7, by
gy
(5.1 ”a=Ba Ft’ Nh'

it has a meaning over M> ! within sign. M~ is called totally n-umbilic if
Haop=% 881,17,
holds good for some scalar functions « and 8.

A Kzhlerian space M“™ is called constant holomorphic curvature, if its curv-
ature tensor satisfies

r
Rhijkz'k(gkkgij_ghjgz'k-l-Fhsz'k_thFik_thiij)' where F =F, g, .
In this section we prove the following

THEOREM 3. In a space of constant holomorphic curvature, each geodes:-
sphere at any point is tolally n-umbilic,

PROOF. Let 0 be a point in a space of constant holomorphic curvature M

of non-zero k. It is known that M°™ admits an allowable complex coordinate
{24} of origin O such that the metric tensor is given by

G =—5(S0 3g—2k220),  @ug=@ange=0,

a* — . (4 4
where z= means Z , the complex conjugate of z, and

*

(5.2) S=1+2ku, u=2"2" .
(Greék indices a, B8, *, A, p. - run from 1 to m, and a*=a-tm. u#=z"2" means
= zaza*). g1EJF are given with respect to {zz} by

g =80 ok, gP=g"""=0.
The Christoffel symbols are zero except

(5.3) r,*=- %’"" (@ 2 +5T5z“*-)
o*

and their complex conjugates I gx e

Now, [ beihg a positive constant, let us put
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- { ., if £>0,
—1° if £<O0.
Then 1t 1s known [4] that in a neighbourhood of any 0 point (zl) i1s represented as
(5. 4) 2= A*tan(ls), or

2= Aztan (Is)

according as £>0 or £<0, where s denotes the distance from 0 to (zz) and A" are
complex numbers such that

(5. 5) ol A A =1.
Henceforce we shall consider only the case 2>0, because the calculation of the

case £<0 1is similar.
From (5.2), (5.4) and (5.5) we have

S=1 _1_2122:132*: secz( [8),
and by differentiation with respect to z° we get
(5. 6) 2 =2s ,

where we have put

A= } secz(ls)tan(ls)=-—‘%—tan(ls).

From (5.6) it follows that

058y = —S,0,l0g4,

1
0prSq="7 0 g~ Sx0glogA.

Substituting into the last equations

___ 1 _
3ﬁlog2— tELIl(ZS) (3S 2)35’

we have
aﬁsa,= _ﬂ(SS _2)sa3ﬁ,

gnSa= {5 T g— (35 —2)5,559
where g is defined by

p=cot(ls).
Thus we can get taking account of (5.3) and (5.6)
(5.7 VgSy=1(S—2)s,5,,

1
VB*SCE:#{T a8 (3S —z)SﬂSﬁ*} .

Now we consider the real coordinate {xi} which is associated to {z?} by =t
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+z'x'.l*. Then (5.7) is written with respect to {ki} as
(5.8) - Vi.sj=;.¢(gﬁ—sz.sj)+u§£§j,
where we have put

p=~—Itan(ls), §,=F;s,

As (5.8) is a tensor equation, it is still valid in any allowable coordinate {xi}.

Hence we may regard {xi} as a normal coordinate of origin 0. Let S, be a
geodesic hypersphere at 0 and we follow the notations in §2. From (2.5) and

(5.8) we have
(5.9) Hab:B;Bijisjzﬂ et o/
taking account of (1.6) and (5.1). Consequently S, is totally »-umbilic, which

proves the theorem.
We remark that ¢ and v in (5.9) satisfy uv=—=~2.

6. The converse problem. In this section we shall see the following theorem
to be valid.

THEOREM 4. In an Einstein-Kdchlerian space M om (m>1), if each geodesic
hypersphere at any point O saiisfies

chb: £ rgab—{—wavb

for some functions i and v such that pyv=consiant, then M o S a space of constant

holomorphic curvature.

PROOF. Denoting by {xi} a normal coordinate of origin 0, we follow the
notations in § 2. For each geodesic hypersphere at 0, we have from (2.5) and
the assumption

(6.1) B JB;(V S —UE — U§ Jﬁz.) =0.

Transvecting (6.1) with B” ka , and taking account of F= —Fﬁ and (1.6), we
get

(6.2) Vs, =u(g;;—s;8,)+U53S,
As (6.2) holds good on each geodesic hypersphere at 0, we can easily see that u

and v are functions of (xf) in a neighbourhood of 0. If we differentiate (6.2)
covariantly and make use of (6.2) itself, it follows that

2
ViV8;=1,(8;i—5;5) — 1 (S5,84;F5,8,:—25,55,)
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+uksjsz-—u sk(s S; -l—sjsz.)

— (8,858,158 5.8, —F 48, ;S 25,8.5,).

Substituting this equation into the Ricci’s identity (4.3), we have
(6.3) —srRr z-jk-—*ak(gv—s S.)— U, (g?k—s S,)
2 -, -
78, (5,8, ~ 5,5
+2uVF . ks —l—szs —F.3

If we transvect (6.3) with g' and take account of

(6.4 R, =Co,,
C being a constant, it follows that

(6.5) —Cs,=(n—2)p,+ {siyi+(7z—l)ﬂ2+u2+2uv} sk+uk-—§‘-ui§k.
Multiplying (6.5) by sk, we get |

(6.6) ~C=(n—1)(s'p, )+ +2up+s'y,

and multiplying 5 = gk}" to (6.5) we have

(6.7) (n—-2) ﬂk§ =0.

On the other hand, it is known that the curvature tensor of a Kihlerian

‘space satisfies

(6.8) oF /R =F"F ...

Hence if we transvect (6.3) with F* and make use of (6.8), (6.7) and (6.4),
it follows that

— C§i=ﬁi+(szuf—l-u2+u2+7mu) §z-.
Thus we get
(6.9) Q== (C +s’u,+ﬂ2+u2+nﬂv)si,
from which it follows that
(6.10) —C=S£ﬂi+3iui+ﬂ2+u2+ﬂﬂu.
From (6.6) and (6.10) we can get
siﬂz-:u(u-—u),

siu£= —C—(n+ l)uu—uz.



Or a Characierization of Spaces of Constant Holomorphic Curvature 119

Consequently we have from (6.9)

(6.11) p;=p(y—p)s;
and
(6.12) v,= —uv(y—pu) s

taking account of py=constant. The Substitution of (6.11) and (6.12) into (6.3)
finally shows that

r
(6.13) s,U" ;:4=0
are valid, where we have put
r 4 r4 r T r 4 o

Now we apply the similar process as in. §4 to (6.13) and complete the proof.

Ochanomizu University,
Tokyo, Japan
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