Kyungpook Math. J.
Volume 13, Number 1
June, 1973

THE SUM OF TWO RADICAL CLASSES

By Yu-Lee Lee and R. E. Propes

The purpose of this paper is to investigate the concept of the sum of two radical classes.
We shall employ the following notation throughout.
$I \leq R$ denotes I is an ideal of the ring R.
$I \lesseqgtr R$ denotes $I \leq R$ but $I \neq R$.
$R \approx R^{\prime}$ denotes the rings R and R^{\prime} are isomorphic.
O, depending upon the context in which it appears denotes the ring O, the ideal O, or the class $\{O\}$.
$L(M)$ denotes the lower radical class determined by the class M of rings.
$U(M)$ denotes the upper radical class determined by the class M of rings.
We shall use the following two equivalent characterizations of radical classes.
THEOREM A [5]. A subclass P of a universal class W of rings is a radical class if and only if P satisfies the following three conditions.
(1 a) P is homomorphically closed.
(2a) Each ring $R \in W$ has a largest P-ideal, $P(R)$.
(3a) If $R \in W$, then $R / P(R)$ is a P-semi-simple ring.
THEOREM B [1]. A subclass P of a universal class W of rings is a radical class if and only if P satisfies the following three conditions.
(1b) P is homomorphically closed.
(2b) If $\left\{I_{\alpha}: \alpha \in \Gamma\right\}$ is a chain of P-ideals of a ring $R \in W$, then $\bigcup_{\alpha \in \Gamma} I_{\alpha}$ is a P-ideal of R.
(3b) If $R \in W$ and if $I \leq R$ such that $I \in P$ and $R / I \in P$, then $R \in P$.
In what follows, W will denote a universal class of rings or alternative narings, and, unless otherwise specified, ot and \mathscr{F} will denote radical classes in W.

THEOREM C[2]. Let P be a radical class in W. If $R \in W$ and $I \leq R$, then $P(I)$ $\leq R$.

Let M be a subclass of W, and let $H(M)$ be the homomorphic closure of M
in W. For each ring $R \in W$, let $D_{1}(R)$ be the set of all ideals of R. By induction, define $D_{n+1}(R)$ to be the family of all rings in W which are ideals of some ring in $D_{n}(R)$. Set $D(R)=\bigcup\left\{D_{n}(R): n=1,2,3, \cdots\right\}$.

THEOREM $D[6] . L(M)=\{R \in W: D(R / I) \cap H(M) \neq O$ for each $I \lessgtr R\}$.
THEOREM E[4]. If M is a hereditary subclass of W, then $L(M)$ is hereditary.
THEOREM F[2]. Let P be a radical class in W. Then P is hereditary if and only if $P(I)=I \cap P(R)$ for each $R \in W$ and each ideal I of R.

DEFINITION. $\circ \mathscr{q}+\mathscr{I}=\{R \in W: O \mathcal{L}(R)+\mathscr{T}(R)=R\}$. We write $(\mathscr{\ell}+\mathscr{I})(R)=0 \ell$ $(R)+\mathscr{T}(R)$ for $R \in W$.

PROPOSITION 1. ou $\cup \mathscr{T} \subset O t+\mathscr{T}$.
PROOF. Let R be a ring and $R \in o \downarrow \cup \mathscr{T}$. Then without loss of generality let $R \in O \mathscr{L}$. Then $\mathscr{\mathscr { L }}(R)=R$ so that $R=\mathscr{Z}(R)+\mathscr{T}(R)$ and hence $R \in \mathscr{z}+\mathscr{T}$.

REMARK. $O \in O t+\mathscr{T}$.
PROPOSITION 2. ot $+\mathscr{T} \subset L(O \cup \mathscr{T})$.
PROOF. Let R be a ring with $R \in O \mathscr{q}+\mathscr{T}$. By way of contradiction assume that $R \notin L(O \cup \mathscr{G})$. Then by Theorem D there exists an ideal I of R with $I \neq R$ such that $D(R / I) \cap(O \cup \mathscr{T})=O$. Hence $D(R / I) \cap O \varepsilon=O$ and $D(R / I) \cap \mathscr{T}=O$ and so R / I is both O-semi-simple and \mathscr{T}-semi-simple. Whence $O \mathscr{O}(R) \subset I$ and $\mathscr{F}(R)$ $\subset I$. Then $\propto \mathscr{L}(R)+\mathscr{T}(R) \subset I$. But $R \in \mathscr{O}+\mathscr{T}$ so that $R \subset I$, and hence $R=I$. This is a contradiction. Thus $R \in \mathscr{O}+\mathscr{F}$ implies $R \in L(o \nearrow \cup \mathscr{T})$.

REMARK. Since $L(\sigma \cup \mathscr{T})$ is the smallest radical containing both $o t$ and \mathscr{G}, it follows from Proposition 2 that $\alpha+\mathscr{T}$ is a radical class if and only if $o t$ $+\mathscr{T}=L(o \cup \mathscr{T})$.
PROPOSITION 3. The class $0 \underset{I}{ }+\mathscr{T}$ is homomorphically closed.
PROOF. Let $R \in O \mathcal{I}+\mathscr{T}$ and let R / I be a homomorphic image of R, where $I \leq R$. Let $J / I=O \mathcal{L}(R / I)$ and let $K / I=\mathscr{T}(R / I)$. Then $(R / I) /(R / \sigma t(R / I))=(R / I) /(J / I)$ $\approx R / J$ is $O L$-semi-simple. Likewise R / K is \mathscr{T}-semi-simple. Thus $O \mathcal{O}(R) \subset J$ and $\mathscr{T}(R) \subset K$ and so $R=O \mathscr{L}(R)+\mathscr{T}(R) \subset J+K$, i. e., $R=J+K$. Then $R / I=(J+K) / I$ $=J / I+K / I=O \mathcal{L}(R / I)+\mathscr{T}(R / I)$ and so $R / I \in O \mathcal{I}+\mathscr{I}$.

DEFINITION. An ideal I of a ring R is called an ($O+\mathscr{T}$)-ideal if $I \in O Z+\mathscr{I}$. PROPOSITION 4. ot $(R)+\mathscr{T}(R)$ is the largest $(o t+\mathscr{T})$-ideal of the ring R.

PROOF. First we show that $O t(R)+\mathscr{T}(R)$ is an $(O \mathscr{O}+\mathscr{T})$-ideal of the ring R. Plainly $\mathscr{O}(R)+\mathscr{T}(R)$ is an ideal of R, because both of and \mathscr{I} are radicals.
 $(R)) \leq o t(R)+\mathscr{G}(R)$. Hence $\sigma t(R)+\mathscr{T}(R)=0 t(o z(R)+\mathscr{I}(R))+\mathscr{T}(o z(R)+\mathscr{T}$ $(R))$ and so $O \mathscr{O}(R)+\mathscr{T}(R) \in O \mathscr{O}+\mathscr{T}$.
To see that $\alpha(R)+\mathscr{T}(R)$ is the largest $(\mathscr{O}+\mathscr{I})$-ideal of R, let $I \leq R$ and $I \in \mathscr{\imath}+\mathscr{I}$. Then $I=\mathscr{o z}(I)+\mathscr{I}(I)$. But by Theorem $\mathrm{C}, \quad \mathcal{A}(I) \subset o z(R)$ and $\mathscr{T}(I) \subset \mathscr{T}(R)$. Therefore $I=0 \imath(I)+\mathscr{T}(I) \subset o z(R)+\mathscr{G}(R)$.
 a radical class. Recall that $S(O)$ and $S(\mathscr{T})$ are the semi-simple classes of the radicals of and \mathscr{T} respectively.

PROOF. In view of propositions 3 and 4, it only remains to prove that $R /(\mathcal{O L}(R)$ $+\mathscr{T}(R))$ is ($O+\mathscr{T}$)-semi-simple for an arbitrary ring R. For this let ot $R / O t$ $(R)+\mathscr{I}(R))=J /(O \mathcal{L}(R)+\mathscr{T}(R))$ and $\mathscr{F}(R /(O \mathcal{L}(R)+B(R)))=K /(o z(R)+\mathscr{F}(R)$). Then R / J is $o l$-semi-simple and R / K is \mathscr{T}-semi-simple. Now $J / K \cap J \approx(K+$ $J) / K \leq R / K$, and R / K is \mathscr{T}-semi-simple. Therefore $J / J \cap K \in S(\mathscr{I})$. Similarly $K / J \cap K \in S(O)$. But $\sigma \mathscr{L}(R)+\mathscr{T}(R) \subset J \cap K$. Thus $J /(\mathcal{O}(R)+\mathscr{T}(R))$ can be mapped homomorphically onto $J / J \cap K$, and $K /(\mathcal{L}(R)+\mathscr{T}(R))$ can be mapped homomorphically onto $K / J \cap K$. But $J /(O \mathscr{O}(R)+\mathscr{T}(R)) \in \mathcal{O}$ and $K(O \mathcal{L}(R)+\mathscr{G}(R))$ $\in \mathscr{F}$. Hence $J / J \cap K \in O \mathscr{\cap} S(\mathscr{T})=O$ and $K / J \cap K \in \mathscr{T} \cap S(O \mathscr{O})=O$. Whence $J=J \cap K$ and $K=J \cap K$ and so $J=K=J \cap K$. It follows that (Ot+G) $(R /(O \mathcal{L}(R)$ $+\mathscr{F}(R)))=0$.

THEOREM 2. Assume that $S(\mathscr{T}) \cap \mathcal{O}=O$ and $S(\mathcal{O}) \cap \mathscr{T}=O$ and that $(I, M \leq R$,

PROOF. Just as in the case of Theorem 1 it remains to prove that $R /(O \mathcal{L}(R)+$ $\mathscr{T}(R))$ is $(O L+\mathscr{G})$-semi-simple. For this let $\circ \mathscr{L}(R /(\mathcal{O L}(R)+\mathscr{T}(R))=J /(\mathcal{O}(R)$ $+\mathscr{T}(R))$ and let $\mathscr{F}(R /(\mathcal{O L}(R)+\mathscr{T}(R))=K /(\mathcal{O L}(\mathrm{R})+\mathscr{I}(R))$. Now $R / J \in$ $S(O \mathcal{L})$ and $R / K \in S(\mathscr{G})$. Therefore $K / K \cap J \approx(K+J) / J$ is $O l$-semi-simple and J / K $\cap J \approx(K+J) / K$ is \mathscr{G}-semi-simple. Now $\mathcal{O t}(R)+\mathscr{G}(R) \subset J \cap K$ so that $K /(O \mathscr{L}(R)$ $+\mathscr{\mathscr { F }}(R))$ can be mapped homomorphically onto $K / J \cap K$ and $J /(O \tau(R)+\mathscr{I}(R))$ can be mapped homomorphically onto $J / J \cap K$. Thus $K / J \cap K \in S(O L) \cap \mathscr{T}=O$ and $J /$ $J \cap K \in S(\mathscr{T}) \cap \propto=O$. Hence $K \subset J \cap K$ and $J \subset J \cap K$ and so $J=K$. Then $J \cap K /(o t$ $(R)+\mathscr{T}(R)) \in O \mathscr{\mathscr { G }}$ and so by the condition of our theorem $J \cap K \in O \cap \mathscr{G}$. Thus $J \in O \cap \mathscr{G} \subset O$ and $K \in O \cap \mathscr{T} \subset \mathscr{T}$ and so $J \subset O(R)$ and $K \subset \mathscr{F}(R)$. Therefore $(J+K) /(O \mathscr{L}(R)+\mathscr{T}(R))=0$, i. e., $R /(\mathcal{O}(R)+\mathscr{I}(R))$ is (ot $+\mathscr{T})$-semi-simple.
 $+\mathscr{T}$ is a radical class.

PROOF. We show that $R /(\operatorname{Ot}(R)+\mathscr{T}(R))$ is $(\mathscr{O L}+\mathscr{I})$-semi-simple. Let $O \mathscr{L}(R /$ $(\operatorname{Ot}(R)+\mathscr{T}(R)))=J /(\mathcal{O}(R)+\mathscr{T}(R))$ and let $\mathscr{T}(R /(\mathcal{O}(R)+\mathscr{T}(R)))=K /(\mathcal{O L}(R)$
 by condition (3b) we have $J \in O \mathscr{L}$ and so $J \subset \mathcal{L}(R) \subset \mathcal{Z}(R)+\mathscr{T}(R)$. Hence $J=O \ell$ $(R)+\mathscr{T}(R)$. Now $R / J \in S(O \mathscr{O})$ and $K /(O \mathscr{L}(R)+\mathscr{T}(R)) \in \mathscr{G}$, while $K / J \cap K \approx$ $(J+K) / J \leq R / J$ and $K / J \cap K$ is a homomorphic image of $K /(\mathcal{O L}(R)+\mathscr{O}(R))$. Thus $K / J \cap K \in S(O Z) \cap \mathscr{G}=O$. Therefore $K \subset J \cap K \subset J=O(R)+\mathscr{I}(R)$. Hence $R /$
 $\sigma(R)+\mathscr{T}(R) \in \mathscr{G}$.

THEOREM 4. ot $+\mathscr{T}$ is a radical class if and only if $R / I \in \mathcal{Z}+\mathscr{T}$ and $I \in$ or $+\mathscr{T}$ implies $R \in O \mathscr{O}+\mathscr{I}$.

PROOF. If $o t+\mathscr{T}$ is a radical class, then clearly the condition must be satisfied, because the condition is condition (3b) of Theorem B. Thus assume that the condition holds. To prove that $\mathscr{\mathscr { L }}+\mathscr{G}$ is a radical class it suffices to show that $R /(\mathcal{O}(R)+\mathscr{T}(R))$ is (ot $+\mathscr{T})$-semi-simple. Hence let $K /(\mathcal{O L}(R)+\mathscr{G}(R))=\mathscr{T}$ $(R /(\mathscr{C R}(R)+\mathscr{T}(R)))$ and let $J /(\operatorname{c\tau }(R)+\mathscr{T}(R))=O \mathcal{L}(R /(O \mathcal{L}(R)+\mathscr{\mathscr { T }}(R)))$. Now $J /$ $(\mathcal{O}(R)+\mathscr{T}(R)) \in \mathscr{O} \subset \mathscr{O}+\mathscr{T}$ and $K /(\mathcal{O}(R)+\mathscr{T}(R)) \in \mathscr{G} \subset \mathscr{O}+\mathscr{G}$, and $\mathscr{\not}(R)+$ $\mathscr{T}(R) \in \mathscr{L}+\mathscr{F}$. Therefore, by the condition, $J, K \in \mathscr{Z}+\mathscr{T}$. But then $J=\alpha \mathscr{L}(J)+$
 $(R)+\mathscr{F}(R)$ and so $O=(J+K) /(O \mathcal{L}(R)+\mathscr{T}(R))=J /(O \mathcal{L}(R)+\mathscr{I}(R))+K /(O \mathcal{L}(R)$ $+\mathscr{I}(R))=\mathscr{O}(R /(O \mathscr{O}(R)+\mathscr{I}(R)))+\mathscr{T}(R /(O \mathscr{O}(R)+\mathscr{F}(R)))=(O \mathscr{O}+\mathscr{T})(R /(O \mathscr{O}$ $(R)+\mathscr{T}(R))$.
Next we give an example of radical classes O and \mathscr{T} for which $o t+\mathscr{T}$ is not a radical class.

EXAMPLE. Let Z denote the ordinary ring of integers and let $R=Z /(4)=\{0+$ (4), $2+(4), 3+(4)\}$. Let $A=\{0+(4), 2+(4)\}$ and $B=R / A$. Set $O t=L(H(\{A\}))$ and $\mathscr{T}=L(H(\{B\}))$. Then $R \notin \mathscr{G}$, because $D(R) \cap H(\{B\})=O$; and $A \notin \mathscr{T}$, because $D(A) \cap H(\{B\})=O$. Therefore $\mathscr{T}(R)=O$. Also, $R \notin O$, because $D(R / A)$
 $O=A$. Thus $R /(O \mathcal{O}(R)+\mathscr{T}(R))=R / A=B \neq O$, and so $O \neq R /(O \mathcal{O}(R)+\mathscr{T}(R)) \in \mathscr{T}$ $\subset O t+\mathscr{I}$. This shows that R is not ($O+\mathscr{T}$)-semi-simple and hence that $O \mathscr{O}+\mathscr{T}$ is not a radical class.

$$
\text { DEFINITION. } S(\mathscr{O}+\mathscr{T})=\{R \in W:(\mathscr{O}+\mathscr{T})(R)=0\}
$$

We have seen that in general $o t+\mathscr{T}$ is not a radical class, however, we are able to prove $S(a+\mathscr{F})$ is a semi-simple class.

DEFINITION [5.P.17]. A subclass Q of W is a semi-simple class if Q has the following properties.
(1s) If $R \in Q$ and $I \leq R$, then I has no non-zero homomorphic image in Q.
(2s) If $R \in W$ and $R \notin Q$, then R has a non-zero ideal $I \in\{A \in W: A$ has no non-zero homomorphic image in $Q\}$.
LEMMA. $S(O \mathscr{O}+\mathscr{I})$ is hereditary.
PROOF. Let $R \in S(O \mathcal{Z}+\mathscr{T})$ and let $I \leq R$. Now $O(R)+\mathscr{T}(R)=O$ and $O(I) \subset$ $O \mathscr{O}(R)$ and $\mathscr{T}(I) \subset \mathscr{T}(R)$ so that $O \mathscr{Z}(I)+\mathscr{T}(I)=O$. Thus $I \in S(O \mathscr{O}+\mathscr{F})$.
THEOREM 5. $S(O+\mathcal{T})$ is a semi-simple class.
PROOF. We must show that $S(O \tau+\mathscr{T})$ satisfies conditions (1s) and (2s). By the above Lemma $S(\mathscr{O}+\mathscr{G})$ satisfies condition (1s). Thus let $R \notin S(O \mathscr{O})$. Then $o t(R)+\mathscr{I}(R) \neq 0$ and $\mathscr{\sim}(R)+\mathscr{T}(R) \leq R$. Since $o z(R)+\mathscr{T} R) \in \mathscr{F}+\mathscr{G}$, then every non-zero homomorphic image of $O \mathscr{O}(R)+\mathscr{T}(R)$ is in $\mathscr{O}+\mathscr{T}$ and hence not in $S(O \mathscr{O}+\mathscr{T})$. Hence condition (2s) is satisfied and $S(\mathscr{O}+\mathscr{I})$ is a semi-simple class.

REMARK. In fact, $S(\mathscr{O}+\mathscr{T})=S(O) \cap S(\mathscr{T})$.
By the Lemma we have from [3, Theorem 2] that $U(S(O \mathscr{O}+\mathscr{T}))=\{R \in W$: every non-zero homomorphic image $f(R) \notin S(\mathcal{O}+\mathscr{I})\}$. We shall show that L $(\mathscr{O} \cup \mathscr{T})=U(S(O \mathscr{C}+\mathscr{T}))$.
THEOREM 6. $S(L(O \cup \mathscr{T}))=S(\mathscr{\mathscr { O }}+\mathscr{F})$.
PROOF. Let $R \in S(\mathscr{O}+\mathscr{T})=S(\mathscr{O}) \cap S(\mathscr{T})$ and let $I=L(\mathscr{O} \cup \mathscr{T})(R)$. Now $I \leq$ $R \in S(O \mathscr{O}) \cap S(\mathscr{G})$, thus $I \in S(O \mathscr{O}) \cap S(\mathscr{T})$, because semi-simple classes are hereditary. Hence $D(I) \cap \mathscr{t}=0=D(I) \cap \mathscr{F}$. Therefore $D(I) \cap(\mathscr{z} \cup \mathscr{F})=0$ and so $I=0$, since $I \in L(O \cup \mathscr{T})$. Thus $S(\mathscr{F}+\mathscr{T}) \subset S(L(o u \cup \mathscr{T}))$. Now let $R \in S(L(o u \cup \mathscr{T}))$. Then $L(O \mathcal{O} \cup \mathscr{T})(R)=O$. If $R \notin S(O)$, then there exists a non-zero ideal I of R such that $I \in \mathscr{O} \subset L(O \cup \mathscr{T})$, which is a contradiction. Similarly, we reach a contradiction if $R \notin S(\mathscr{G})$. So we must have $R \in S(\mathscr{O}) \cap S(\mathscr{T})=S(\mathscr{O}+\mathscr{I})=S(\mathscr{O}$ $+\mathscr{T})$. Therefore $S(L(\mathscr{O} \cup \mathscr{F})) \subset S(O \mathscr{O}+\mathscr{F})$.

Corollary. $L(O \cup \mathscr{G})=U(S(O \mathscr{O}+\mathscr{T}))$.
PROOF. By Theorem $6 S(\mathscr{L}+\mathscr{T})=S(L(\mathscr{O} \cup \mathscr{T}))$. Therefore $U(S(\mathscr{L}+\mathscr{T}))=$ $U(S(L(\mathscr{O} \cup \mathscr{T})))=L(\mathscr{O} \cup \mathscr{I})$.

REMARK. $\sigma t+\mathscr{T}$ is a radical class if and only if $R /(O \mathcal{O}(R)+\mathscr{F}(R)) \in S(O Z) \cap$ $S(\mathscr{J})$ for each ring R.

PROPOSITION 5. If each of and \mathscr{F} is hereditary and if $o t+\mathscr{T}$ is a radical, then $\mathrm{Cz}+\mathscr{T}$ is a hereditary radical.

PROOF. If $\mathscr{A}+\mathscr{T}$ is a radical, then $\mathscr{O t}+\mathscr{T}=L(O \cup \mathscr{T})$. Since each of O and \mathscr{F} is hereditary, the $\mathscr{\sim \cup \mathscr { T }}$ is a hereditary class. Then by Theorem E $L(\mathscr{O} \cup \mathscr{T})$ is hereditary.

PROPOSITION 6. If ot $+\mathscr{G}$ is a hereditary class, then $I \cap O(R)+I \cap \mathscr{T}(R)$ $=I \cap(O)(R)+\mathscr{T}(R))$ for each ring R and each ideal I of R.
PROOF. Let R be a ring and let $I \leq R$. Then $\mathcal{C l}(I)+\mathscr{F}(I) \subset I \cap O L(R)+I \cap \mathscr{T}$ $(R) \subset I \cap(\mathcal{O L}(R)+\mathscr{F}(R)) \subset I$. But $I \cap(O \mathscr{L}(R)+\mathscr{T}(R)) \leq O \mathscr{O}(R)+\sigma(R) \in \mathscr{I}+\mathscr{T}$. Hence $I \cap(\mathscr{O}(R)+\mathscr{F}(R)) \in \mathscr{O}+\mathscr{I}$, i.e., $I \cap(\mathscr{O}(R)+\mathscr{T}(R))$ is an $(\mathscr{O}+\mathscr{T})-$ ideal of I. Since $O \mathscr{t}(I)+\mathscr{T}(I)$ is the largest $(\mathscr{O}+\mathscr{F})$-ideal of I, then $I \cap(\mathcal{C L}(R)$ $+\mathscr{T}(R)) \subset \operatorname{Os}(I)+\mathscr{T}(I)$.

THEOREM 7. Let of and \mathscr{I} be hereditary radicals. Then the class $\mathcal{O}+\mathscr{T}$ is hereditary if and only if $I \cap O(R)+I \cap \mathscr{T}(R)=I \cap(O \mathcal{O}(R)+\mathscr{T}(R))$ for each ring R and each ideal I of R.
PROOF. If $o t+\mathscr{T}$ is hereditary, the condition follows from Proposition 6. Thus suppose the condition holds and let $R \in \mathcal{O}+\mathscr{T}$ and $I \leq R$. Since each of O and \mathscr{T} is a hereditary radical, we have by Theorem $\mathrm{F}, \quad \mathscr{t}(I)+\mathscr{I}(I)=I \cap O \mathscr{O}(R)+$ $I \cap \mathscr{T}(R)$. By the condition we have $I \cap \mathscr{O L}(R)+I \cap(\mathcal{O L}(R)+\mathscr{T}(R))=I \cap R=I$. Thus $o \mathscr{t}(I)+\mathscr{T}(I)=I$ and so $I \in O \mathscr{O}+\mathscr{T}$.

> Kansas State University and the University of Wisconsin-Milwaukee

REFERENCES

[1] S. A. Amitsur, A general theory of radicals, II. Radicals in rings and bicategories, Am. J, Math. 76 (1954), 100-125.
[2] T. Anderson, N. Divinsky, A. Sulinski, Hereditary radicals in associative and alternative rings, Can. Jour. Math. 17 (1965), 594-603.
[3] N. J. Divinsky, Rings and Radicals, University of Toronto Press, Toronto, (1965).
[4] A. E. Hoffman, W. G. Leavitt, Properties inherited by the lower radical, (to appear).
[5] A. G. Kurosh, Radicals of rings and algebras (Russian), Mat. Sb. , 33 (75) (1953), 13-26.
[6] Yu-Lee Lee, On the construction of lower radical properties of rings, Pacific J. of Math. , Vol. 28, No. 2, (1969).

