Kyungpook Math. J. Volume 13, Number 1 June, 1973

THE SUM OF TWO RADICAL CLASSES

By Yu-Lee Lee and R.E. Propes

The purpose of this paper is to investigate the concept of the sum of tworadical classes.

We shall employ the following notation throughout.

 $I \leq R$ denotes I is an ideal of the ring R.

 $I \not\subseteq R$ denotes $I \leq R$ but $I \neq R$.

 $R \approx R'$ denotes the rings R and R' are isomorphic.

O, depending upon the context in which it appears denotes the ring O, the ideal O, or the class $\{O\}$.

L(M) denotes the lower radical class determined by the class M of rings. U(M) denotes the upper radical class determined by the class M of rings.

We shall use the following two equivalent characterizations of radical classes.

THEOREM A [5]. A subclass P of a universal class W of rings is a radical class if and only if P satisfies the following three conditions.

(1 a) P is homomorphically closed.

(2a) Each ring $R \in W$ has a largest P-ideal, P(R).

(3a) If $R \in W$, then R/P(R) is a P-semi-simple ring.

THEOREM B [1]. A subclass P of a universal class W of rings is a radical class if and only if P satisfies the following three conditions.

(1b) P is homomorphically closed.

(2b) If $\{I_{\alpha} : \alpha \in \Gamma\}$ is a chain of P-ideals of a ring $R \in W$, then $\bigcup_{\alpha \in \Gamma} I_{\alpha}$ is a P-ideal of R.

(3b) If $R \in W$ and if $I \leq R$ such that $I \in P$ and $R/I \in P$, then $R \in P$.

In what follows, W will denote a universal class of rings or alternative narings, and, unless otherwise specified, α and \mathcal{T} will denote radical classes in W.

THEOREM C[2]. Let P be a radical class in W. If $R \in W$ and $I \leq R$, then $P(I) \leq R$.

Let M be a subclass of W, and let H(M) be the homomorphic closure of M

Yu-Lee Lee and R.E. Propes

in W. For each ring $R \in W$, let $D_1(R)$ be the set of all ideals of R. By induction, define $D_{n+1}(R)$ to be the family of all rings in W which are ideals of some ring in $D_n(R)$. Set $D(R) = \bigcup \{D_n(R) : n=1, 2, 3, \dots\}$.

THEOREM D[6]. $L(M) = \{R \in W : D(R/I) \cap H(M) \neq O \text{ for each } I \leq R\}$.

THEOREM E[4]. If M is a hereditary subclass of W, then L(M) is hereditary.

THEOREM F[2]. Let P be a radical class in W. Then P is hereditary if and only if $P(I)=I \cap P(R)$ for each $R \in W$ and each ideal I of R.

DEFINITION. $\mathcal{A} + \mathcal{T} = \{R \in W : \mathcal{A}(R) + \mathcal{T}(R) = R\}$. We write $(\mathcal{A} + \mathcal{T}) (R) = \mathcal{A}(R) + \mathcal{T}(R)$ for $R \in W$.

PROPOSITION 1. $\alpha \cup \mathcal{T} \subset \alpha + \mathcal{T}$.

PROOF. Let R be a ring and $R \in \alpha \cup \mathcal{T}$. Then without loss of generality let $R \in \alpha$. Then $\alpha(R) = R$ so that $R = \alpha(R) + \mathcal{T}(R)$ and hence $R \in \alpha + \mathcal{T}$.

REMARK. $0 \in \alpha + \mathcal{T}$.

82

PROPOSITION 2. $\alpha + \mathcal{T} \subset L(\alpha \cup \mathcal{T})$.

PROOF. Let R be a ring with $R \in \mathcal{A} + \mathcal{T}$. By way of contradiction assume that $R \notin L(\mathcal{A} \cup \mathcal{T})$. Then by Theorem D there exists an ideal I of R with $I \neq R$ such that $D(R/I) \cap (\mathcal{A} \cup \mathcal{T}) = 0$. Hence $D(R/I) \cap \mathcal{A} = 0$ and $D(R/I) \cap \mathcal{T} = 0$ and so R/I is both \mathcal{A} -semi-simple and \mathcal{T} -semi-simple. Whence $\mathcal{A}(R) \subset I$ and $\mathcal{T}(R) \subset I$. Then $\mathcal{A}(R) + \mathcal{T}(R) \subset I$. But $R \in \mathcal{A} + \mathcal{T}$ so that $R \subset I$, and hence R = I. This is a contradiction. Thus $R \in \mathcal{A} + \mathcal{T}$ implies $R \in L(\mathcal{A} \cup \mathcal{T})$.

REMARK. Since $L(\alpha \cup \mathscr{T})$ is the smallest radical containing both α and \mathscr{T} , it follows from Proposition 2 that $\alpha + \mathscr{T}$ is a radical class if and only if α $+\mathscr{T} = L(\alpha \cup \mathscr{T})$.

PROPOSITION 3. The class $\alpha + \mathcal{T}$ is homomorphically closed.

PROOF. Let $R \in \mathcal{A} + \mathcal{F}$ and let R/I be a homomorphic image of R, where $I \leq R$. Let $J/I = \mathcal{A}(R/I)$ and let $K/I = \mathcal{F}(R/I)$. Then $(R/I)/(R/\mathcal{A}(R/I)) = (R/I)/(J/I)$ $\approx R/J$ is \mathcal{A} -semi-simple. Likewise R/K is \mathcal{F} -semi-simple. Thus $\mathcal{A}(R) \subset J$ and $\mathcal{F}(R) \subset K$ and so $R = \mathcal{A}(R) + \mathcal{F}(R) \subset J + K$, i.e., R = J + K. Then R/I = (J + K)/I $= J/I + K/I = \mathcal{A}(R/I) + \mathcal{F}(R/I)$ and so $R/I \in \mathcal{A} + \mathcal{F}$.

DEFINITION. An ideal I of a ring R is called an $(\alpha + \mathcal{T})$ -ideal if $I \in \alpha + \mathcal{T}$. PROPOSITION 4. $\alpha(R) + \mathcal{T}(R)$ is the largest $(\alpha + \mathcal{T})$ -ideal of the ring R.

The Sum of Two Radical Classes 83

PROOF. First we show that $\mathcal{A}(R) + \mathcal{F}(R)$ is an $(\mathcal{A} + \mathcal{F})$ -ideal of the ring **R**. Plainly $\mathcal{A}(R) + \mathcal{F}(R)$ is an ideal of R, because both \mathcal{A} and \mathcal{F} are radicals. Clearly $\mathcal{A}(R) \subset \mathcal{A}(\mathcal{A}(R) + \mathcal{F}(R)) \leq \mathcal{A}(R) + \mathcal{F}(R)$ and $\mathcal{F}(R) \subset \mathcal{F}(\mathcal{A}(R) + \mathcal{F}(R)) \leq \mathcal{A}(R) + \mathcal{F}(R)$. Hence $\mathcal{A}(R) + \mathcal{F}(R) = \mathcal{A}(\mathcal{A}(R) + \mathcal{F}(R)) + \mathcal{F}(\mathcal{A}(R) + \mathcal{F}(R)) \leq \mathcal{A}(R) + \mathcal{F}(R) \in \mathcal{A} + \mathcal{F}$.

To see that $\alpha(R) + \mathscr{T}(R)$ is the largest $(\alpha + \mathscr{T})$ -ideal of R, let $I \leq R$ and $I \in \alpha + \mathscr{T}$. Then $I = \alpha(I) + \mathscr{T}(I)$. But by Theorem C, $\alpha(I) \subset \alpha(R)$ and $\mathscr{T}(I) \subset \mathscr{T}(R)$. Therefore $I = \alpha(I) + \mathscr{T}(I) \subset \alpha(R) + \mathscr{T}(R)$.

THEOREM 2. If $S(\alpha) \cap \mathcal{T} = 0$, $S(\mathcal{T}) \cap \alpha = 0$, and $\alpha \cap \mathcal{T} = 0$, then $\alpha + \mathcal{T}$ is a radical class. Recall that $S(\alpha)$ and $S(\mathcal{T})$ are the semi-simple classes of the radicals α and \mathcal{T} respectively.

PROOF. In view of propositions 3 and 4, it only remains to prove that $R/(\mathcal{A}(R) + \mathcal{T}(R))$ is $(\mathcal{A} + \mathcal{T})$ -semi-simple for an arbitrary ring R. For this let $\mathcal{A}(\mathcal{A}(R) + \mathcal{T}(R)) = J/(\mathcal{A}(R) + \mathcal{T}(R))$ and $\mathcal{T}(R/(\mathcal{A}(R) + B(R))) = K/(\mathcal{A}(R) + \mathcal{T}(R))$. Then R/J is \mathcal{A} -semi-simple and R/K is \mathcal{T} -semi-simple. Now $J/K \cap J \approx (K + J)/K \leq R/K$, and R/K is \mathcal{T} -semi-simple. Therefore $J/J \cap K \in S(\mathcal{T})$. Similarly $K/J \cap K \in S(\mathcal{A})$. But $\mathcal{A}(R) + \mathcal{T}(R) \subset J \cap K$. Thus $J/(\mathcal{A}(R) + \mathcal{T}(R))$ can be mapped homomorphically onto $J/J \cap K$, and $K/(\mathcal{A}(R) + \mathcal{T}(R))$ can be mapped homomorphically onto $K/J \cap K$. But $J/(\mathcal{A}(R) + \mathcal{T}(R)) \in \mathcal{A}$ and $K(\mathcal{A}(R) + \mathcal{T}(R)) \in \mathcal{F}$. Hence $J/J \cap K \in \mathcal{A} \cap S(\mathcal{F}) = O$ and $K/J \cap K \in \mathcal{T} \cap S(\mathcal{A}) = O$. Whence $J = J \cap K$ and $K = J \cap K$ and so $J = K = J \cap K$. It follows that $(\mathcal{A} + \mathcal{T})(R/(\mathcal{A}(R)) = I)$.

 $+\mathcal{T}(R))=0.$

THEOREM 2. Assume that $S(\mathcal{T}) \cap \alpha = 0$ and $S(\alpha) \cap \mathcal{T} = 0$ and that $(I, M \leq R, I/M \in \alpha \cap \mathcal{T}, M \supset \alpha(R))$ implies $I \in \alpha \cap \mathcal{T}$. Then $\alpha + \mathcal{T}$ is a radical class.

PROOF. Just as in the case of Theorem 1 it remains to prove that $R/(\mathcal{O}(R) + \mathcal{J}(R))$ is $(\mathcal{O} + \mathcal{J})$ -semi-simple. For this let $\mathcal{O}(R/(\mathcal{O}(R) + \mathcal{J}(R)) = J/(\mathcal{O}(R) + \mathcal{J}(R))$ and let $\mathcal{J}(R/(\mathcal{O}(R) + \mathcal{J}(R)) = K/(\mathcal{O}(R) + \mathcal{J}(R))$. Now $R/J \in S(\mathcal{O})$ and $R/K \in S(\mathcal{J})$. Therefore $K/K \cap J \approx (K+J)/J$ is \mathcal{O} -semi-simple and $J/K \cap J \approx (K+J)/K$ is \mathcal{J} -semi-simple. Now $\mathcal{O}(R) + \mathcal{J}(R) \subset J \cap K$ so that $K/(\mathcal{O}(R) + \mathcal{J}(R))$ can be mapped homomorphically onto $K/J \cap K$ and $J/(\mathcal{O}(R) + \mathcal{J}(R))$ can be mapped homomorphically onto $J/J \cap K$. Thus $K/J \cap K \in S(\mathcal{O}) \cap \mathcal{J} = O$ and $J/J \cap K \in S(\mathcal{J}) \cap \mathcal{O} = O$. Hence $K \subset J \cap K$ and $J \subset J \cap K$ and so J = K. Then $J \cap K/(\mathcal{O}(R) + \mathcal{J}(R)) \in \mathcal{O} \cap \mathcal{J}$ and so by the condition of our theorem $J \cap K \in \mathcal{O} \cap \mathcal{J}$. Thus $J \in \mathcal{O} \cap \mathcal{J} \subset \mathcal{O}$ and $K \in \mathcal{O} \cap \mathcal{J} \subset \mathcal{J}$ and so $J \subset \mathcal{O}(R)$ and $K \subset \mathcal{J}(R)$. Therefore $(J+K)/(\mathcal{O}(R) + \mathcal{J}(R)) = O$, i.e., $R/(\mathcal{O}(R) + \mathcal{J}(R))$ is $(\mathcal{O} + \mathcal{J})$ -semi-simple.

.

Yu-Lee Lee and R.E. Propes

۰ ۲

--

84

THEOREM 3. If $S(\mathcal{T}) \cap \alpha = 0$ and $S(\alpha) \cap \mathcal{T} = 0$ and $\alpha + \mathcal{T} = \alpha \cup \mathcal{T}$, then $\alpha + \mathcal{T}$ is a radical class.

•

•

PROOF. We show that $R/(\alpha(R) + \mathcal{T}(R))$ is $(\alpha + \mathcal{T})$ -semi-simple. Let $\alpha(R/(\alpha(R) + \mathcal{T}(R))) = J/(\alpha(R) + \mathcal{T}(R))$ and let $\mathcal{T}(R/(\alpha(R) + \mathcal{T}(R))) = K/(\alpha(R) + \mathcal{T}(R))$. + $\mathcal{T}(R)$. Now $\alpha(R) + \mathcal{T}(R) \in \alpha + \mathcal{T} = \alpha \cup \mathcal{T}$. Say $\alpha(R) + \mathcal{T}(R) \in \alpha$. Then by condition (3b) we have $J \in \alpha$ and so $J \subset \alpha(R) \subset \alpha(R) + \mathcal{T}(R)$. Hence $J = \alpha$

 $(R) + \mathscr{T}(R)$. Now $R/J \in S(\mathscr{A})$ and $K/(\mathscr{A}(R) + \mathscr{T}(R)) \in \mathscr{T}$, while $K/J \cap K \approx (J+K)/J \leq R/J$ and $K/J \cap K$ is a homomorphic image of $K/(\mathscr{A}(R) + \mathscr{T}(R))$. Thus $K/J \cap K \in S(\mathscr{A}) \cap \mathscr{T} = 0$. Therefore $K \subset J \cap K \subset J = \mathscr{A}(R) + \mathscr{T}(R)$. Hence $R/(\mathscr{A}(R) + \mathscr{T}(R))$ is $\mathscr{A} + \mathscr{T}$ -semi-simple. We arrive at the same conclusion if $\mathscr{A}(R) + \mathscr{T}(R) \in \mathscr{T}$.

THEOREM 4. $\alpha + \mathcal{T}$ is a radical class if and only if $R/I \in \alpha + \mathcal{T}$ and $I \in \alpha + \mathcal{T}$ implies $R \in \alpha + \mathcal{T}$.

PROOF. If $\alpha + \mathcal{F}$ is a radical class, then clearly the condition must be satisfied, because the condition is condition (3b) of Theorem B. Thus assume that the condition holds. To prove that $\alpha + \mathcal{F}$ is a radical class it suffices to show that $R/(\alpha(R) + \mathcal{F}(R))$ is $(\alpha + \mathcal{F})$ -semi-simple. Hence let $K/(\alpha(R) + \mathcal{F}(R)) = \mathcal{F}$ $(R/(\alpha(R) + \mathcal{F}(R)))$ and let $J/(\alpha(R) + \mathcal{F}(R)) = \alpha(R/(\alpha(R) + \mathcal{F}(R)))$. Now $J/(\alpha(R) + \mathcal{F}(R)) \in \alpha \subset \alpha + \mathcal{F}$ and $K/(\alpha(R) + \mathcal{F}(R)) \in \mathcal{F} \subset \alpha + \mathcal{F}$, and $\alpha(R) + \mathcal{F}(R) \in \alpha + \mathcal{F}$. Therefore, by the condition, $J, K \in \alpha + \mathcal{F}$. But then $J = \alpha(J) + \mathcal{F}(J) \subset \alpha(R) + \mathcal{F}(R)$ and $K = \alpha(K) + \mathcal{F}(K) \subset \alpha(R) + \mathcal{F}(R)$. Thus $J + K \subset \alpha$ $(R) + \mathcal{F}(R)$ and so $O = (J + K)/(\alpha(R) + \mathcal{F}(R)) = J/(\alpha(R) + \mathcal{F}(R)) + K/(\alpha(R) + \mathcal{F}(R)) = \alpha(R/(\alpha(R) + \mathcal{F}(R))) + \mathcal{F}(R/(\alpha(R) + \mathcal{F}(R))) = (\alpha + \mathcal{F})(R/(\alpha(R) + \mathcal{F}(R)))$.

Next we give an example of radical classes \mathscr{A} and \mathscr{T} for which $\mathscr{A} + \mathscr{T}$ is not a radical class.

EXAMPLE. Let Z denote the ordinary ring of integers and let $R=Z/(4)=\{0+(4), 2+(4), 3+(4)\}$. Let $A=\{0+(4), 2+(4)\}$ and B=R/A. Set $\mathcal{A}=L(H(\{A\}))$ and $\mathcal{T}=L(H(\{B\}))$. Then $R \notin \mathcal{T}$, because $D(R) \cap H(\{B\})=0$; and $A \notin \mathcal{T}$, because $D(A) \cap H(\{B\})=0$. Therefore $\mathcal{T}(R)=0$. Also, $R \in \mathcal{A}$, because $D(R/A) \cap H(\{A\}) = 0$. But $A \in \mathcal{A}$, clearly. Hence $(\mathcal{A}+\mathcal{T})(R)=\mathcal{A}(R)+\mathcal{T}(R)=\mathcal{A}(R)+\mathcal{A}(R)+\mathcal{A}(R)=\mathcal{A}(R)+\mathcal{A}(R)+\mathcal{A}(R)=\mathcal{A}(R)+\mathcal{A}(R)+\mathcal{A}(R)=\mathcal{A}(R)+\mathcal{A}(R)+\mathcal{A}(R)=\mathcal{A}(R)+\mathcal{A}(R)+\mathcal{A}(R)=\mathcal{A}(R)+\mathcal{A$

DEFINITION. $S(\alpha + \mathscr{T}) = \{R \in W : (\alpha + \mathscr{T})(R) = 0\}.$

The Sum of Two Radical Classes

85

We have seen that in general $\alpha + \mathscr{T}$ is not a radical class, however, we are able to prove $S(\alpha + \mathscr{T})$ is a semi-simple class.

DEFINITION [5.P.17]. A subclass Q of W is a semi-simple class if Q has the following properties.

(1s) If $R \in Q$ and $I \leq R$, then I has no non-zero homomorphic image in Q. (2s) If $R \in W$ and $R \notin Q$, then R has a non-zero ideal $I \in \{A \in W : A \text{ has no}\}$

non-zero homomorphic image in Q.

LEMMA. $S(\alpha + \mathcal{T})$ is hereditary.

PROOF. Let $R \in S(\mathcal{A} + \mathcal{F})$ and let $I \leq R$. Now $\mathcal{A}(R) + \mathcal{F}(R) = 0$ and $\mathcal{A}(I) \subset \mathcal{A}(R)$ and $\mathcal{F}(I) \subset \mathcal{F}(R)$ so that $\mathcal{A}(I) + \mathcal{F}(I) = 0$. Thus $I \in S(\mathcal{A} + \mathcal{F})$.

THEOREM 5. $S(\alpha + \mathcal{T})$ is a semi-simple class.

PROOF. We must show that $S(\mathcal{A}+\mathcal{F})$ satisfies conditions (1s) and (2s). By the above Lemma $S(\mathcal{A}+\mathcal{F})$ satisfies condition (1s). Thus let $R \notin S(\mathcal{A}+\mathcal{F})$. Then $\mathcal{A}(R) + \mathcal{F}(R) \neq 0$ and $\mathcal{A}(R) + \mathcal{F}(R) \leq R$. Since $\mathcal{A}(R) + \mathcal{F}(R) \in \mathcal{A}+\mathcal{F}$, then every non-zero homomorphic image of $\mathcal{A}(R) + \mathcal{F}(R)$ is in $\mathcal{A}+\mathcal{F}$ and hence not in $S(\mathcal{A}+\mathcal{F})$. Hence condition (2s) is satisfied and $S(\mathcal{A}+\mathcal{F})$ is a semi-simple class.

REMARK. In fact, $S(\alpha + \mathcal{T}) = S(\alpha) \cap S(\mathcal{T})$.

By the Lemma we have from [3, Theorem 2] that $U(S(\mathcal{A}+\mathcal{F})) = \{R \in W:$ every non-zero homomorphic image $f(R) \notin S(\mathcal{A}+\mathcal{F})\}$. We shall show that L

 $(\alpha \cup \mathscr{T}) = U(S(\alpha + \mathscr{T})).$

THEOREM 6. $S(L(\alpha \cup \mathscr{T})) = S(\alpha + \mathscr{T}).$

PROOF. Let $R \in S(\alpha + \mathcal{F}) = S(\alpha) \cap S(\mathcal{F})$ and let $I = L(\alpha \cup \mathcal{F})(R)$. Now $I \leq R \in S(\alpha) \cap S(\mathcal{F})$, thus $I \in S(\alpha) \cap S(\mathcal{F})$, because semi-simple classes are hereditary. Hence $D(I) \cap \alpha = 0 = D(I) \cap \mathcal{F}$. Therefore $D(I) \cap (\alpha \cup \mathcal{F}) = 0$ and so I = 0, since $I \in L(\alpha \cup \mathcal{F})$. Thus $S(\alpha + \mathcal{F}) \subset S(L(\alpha \cup \mathcal{F}))$. Now let $R \in S(L(\alpha \cup \mathcal{F}))$. Then $L(\alpha \cup \mathcal{F})(R) = 0$. If $R \notin S(\alpha)$, then there exists a non-zero ideal I of R such that $I \in \alpha \subset L(\alpha \cup \mathcal{F})$, which is a contradiction. Similarly, we reach a contradiction if $R \notin S(\mathcal{F})$. So we must have $R \in S(\alpha) \cap S(\mathcal{F}) = S(\alpha + \mathcal{F}) = S(\alpha + \mathcal{F})$. Therefore $S(L(\alpha \cup \mathcal{F})) \subset S(\alpha + \mathcal{F})$.

COROLLARY. $L(\alpha \cup \mathcal{T}) = U(S(\alpha + \mathcal{T})).$

PROOF. By Theorem 6 $S(\alpha + \mathscr{T}) = S(L(\alpha \cup \mathscr{T}))$. Therefore $U(S(\alpha + \mathscr{T})) = U(S(L(\alpha \cup \mathscr{T}))) = L(\alpha \cup \mathscr{T})$.

Yu-Lee Lee and R.E. Propes

86

REMARK. $\mathcal{A} + \mathcal{F}$ is a radical class if and only if $R/(\mathcal{A}(R) + \mathcal{F}(R)) \in S(\mathcal{A}) \cap S(\mathcal{F})$ for each ring R.

PROPOSITION 5. If each α and \mathcal{F} is hereditary and if $\alpha + \mathcal{F}$ is a radical, then $\alpha + \mathcal{F}$ is a hereditary radical.

PROOF. If $\alpha + \mathcal{T}$ is a radical, then $\alpha + \mathcal{T} = L(\alpha \cup \mathcal{T})$. Since each of α and \mathcal{T} is hereditary, the $\alpha \cup \mathcal{T}$ is a hereditary class. Then by Theorem E

 $L(\alpha \cup \mathcal{F})$ is hereditary.

PROPOSITION 6. If $\mathcal{A} + \mathcal{T}$ is a hereditary class, then $I \cap \mathcal{A}(R) + I \cap \mathcal{T}(R)$ = $I \cap (\mathcal{A}(R) + \mathcal{T}(R))$ for each ring R and each ideal I of R.

PROOF. Let R be a ring and let $I \leq R$. Then $\alpha(I) + \mathcal{F}(I) \subset I \cap \alpha(R) + I \cap \mathcal{F}(R) \subset I \cap (\alpha(R) + \mathcal{F}(R)) \subset I$. But $I \cap (\alpha(R) + \mathcal{F}(R)) \leq \alpha(R) + \mathcal{F}(R) \in \alpha + \mathcal{F}$. Hence $I \cap (\alpha(R) + \mathcal{F}(R)) \in \alpha + \mathcal{F}$, i.e., $I \cap (\alpha(R) + \mathcal{F}(R))$ is an $(\alpha + \mathcal{F})$ -ideal of I. Since $\alpha(I) + \mathcal{F}(I)$ is the largest $(\alpha + \mathcal{F})$ -ideal of I, then $I \cap (\alpha(R) + \mathcal{F}(R)) \subset \alpha(I) + \mathcal{F}(I)$.

THEOREM 7. Let \mathcal{A} and \mathcal{T} be hereditary radicals. Then the class $\mathcal{A}+\mathcal{T}$ is hereditary if and only if $I \cap \mathcal{A}(R) + I \cap \mathcal{T}(R) = I \cap (\mathcal{A}(R) + \mathcal{T}(R))$ for each ring R and each ideal I of R.

PROOF. If $\alpha + \mathscr{T}$ is hereditary, the condition follows from Proposition 6. Thus suppose the condition holds and let $R \in \alpha + \mathscr{T}$ and $I \leq R$. Since each of α and \mathscr{T} is a hereditary radical, we have by Theorem F, $\alpha(I) + \mathscr{T}(I) = I \cap \alpha(R) + I \cap \mathscr{T}(R)$. By the condition we have $I \cap \alpha(R) + I \cap (\alpha(R) + \mathscr{T}(R)) = I \cap R = I$. Thus $\alpha(I) + \mathscr{T}(I) = I$ and so $I \in \alpha + \mathscr{T}$.

> Kansas State University and the University of Wisconsin-Milwaukee

REFERENCES

 S.A. Amitsur, A general theory of radicals, II. Radicals in rings and bicategories, Am. J. Math. 76 (1954), 100-125.

[2] T. Anderson, N. Divinsky, A. Sulinski, Hereditary radicals in associative and alternative rings, Can. Jour. Math. 17 (1965), 594-603.

[3] N.J. Divinsky, Rings and Radicals, University of Toronto Press, Toronto, (1965).

[4] A.E. Hoffman, W.G. Leavitt, Properties inherited by the lower radical, (to appear).
[5] A.G. Kurosh, Radicals of rings and algebras (Russian), Mat. Sb., 33 (75) (1953), 13-26.
[6] Yu-Lee Lee, On the construction of lower radical properties of rings, Pacific J. of Math., Vol. 28, No. 2, (1969).