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CONVEXITY THEOREM FOR (N, p, @) SUMMABILITY

By Rajiv Sinha
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1. Let Zléz,, be an infinite series, and {s,} be the sequence of its partial sums
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For ¢ real, define
x a_. (a+D(a+2)(ax+n)
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Let {p,} be a sequence with p,>0Q and p,=>0 for #>0. Define

(n=1, 2, +-).

pa': i A:::pf' (1- 1)
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The following identities are immediate:

2. A  p=p . (1.2)

Pr=p T o5 % (L.3)

where

Let {q,} be any sequence of constants, and write
(P*q)nzpoqn+plqn_1+"'+pﬂq0'

DEFINITION. (N, 2, q) summability.

For a> —1 and Zoa,, a series, let
y—
ta;—c————l > 5 q,8 (1.4)
r Pa*‘?),; r=0 "=y U7 .
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%ar=s(N. p*,q) or s,—s(N,p2,q).
If t:=o(1) we write
éo a, is bounded (N, 2, q).

REMARK. If we take p,=1, p,=0 for >0 and ¢,=1 for '#=>0, then the above

definition vields the standard definition of Cesaro summability of order a.

2. The following theorem concerning Cesaro summability is known.

n=0

THEOREM A. If 3Z a, i¢s bounded (c, ) and summable (c, 5) where 5>o> -1,

then it 18 summable (¢, 7) for every r> .

A proof of this theorem is given in Zygmund [4], and for the case where

o, B and 7 are integers m Hardy ([2], Theorem 70).
The purpose of this paper is to extend the scope of this theorem to include
certain other families of (N, p, ¢) methods of summability. The theorem which

we establish here includes theorem A as a particular case.

3. In order to prove our theorem we requires some restriction on the sequence
(pé*q),. We shall impose the following condition:
For each £> —1 there exist positive constants H ; and H, (which may depend

on ¢ but not on #) such that
H 18 <(pS*q),/(pxq) < H . 3.1

It may be remarked that (3.1) does not hold in general.

THEOREM. If >r>a>—1, (8.1) holds for £>—1, 3O a, is bounded (N,

n=_

%, q), and summable (N, pB, q), then > a, is summable (N, pr, q).
n=()

In view of ([3], Theorem 1), the above theorem is a consequence of the
following lemma.

LEMMA. If a> -1, (8.1) kelds for &> —1, ZO a, is bounded (N, pe, q), and

summable (N, ﬁ““, q) to zero, and 0<5<1, thesn ZO a, tS summable (N, p‘x”, g)
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to zeryo.
(r) n 4 . -
PROOF. Let T = ZE} P _.q; S; We are given that
1=
() a
T =0((}'7 *4)?3): '
and
1 1
T =0((™ 5 )
We are required to prove that
+0 +0
TP =0((" %) ).
Now
(a+5)___ R -1 _ ()
. T” -z____ZO A,,_z' Tz. .
Thus for Q in the open interval ( é , 1) we have
gy [Qrl 51 5
@D Pt p@ S 0t @
n i=(0Q B—1 (2 i=(Qn] +1 n—1 [
Let us consider I, first. By Abel’s formula for partial summation we have
[Qul—1 52 (a+l) d-1 (a+1)
I,= EO Aﬂ_z. Tz. —I-Aﬂ_[Qn] T[Qn] .
" So
(Qr]  §5— 31 -1 a+l
LISE 14, 1T +oCin—10m) T 6" xan).

Now by the condition (3.1) we find that

1,1 @ xg), 1@ 52

An. 1)
" Foxg) = ) EOIA,,_ZIW?H( )

where 7,20 and tends to zero as ¢ tends to infinity. Again using (3.1) we obtaimn

o - [Q ] —
L1/ k), =oln " (44 In))+o(L).

2=0

Now it is easy to see that

1I,1=0(0" %))
Consider

& 0—-1 (o) o & 51
LI< > A |T.) |=e0{ max. %q) . A )
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Fa 4 ﬂ-—[Qﬂ] v, -
=o((p *@), 2o £ D

2=1

=0((p™*q),, {n— [Qn]}°).

Again using (3.1) we find that
| Lol /(0™ %), =0({1-Q}°).

Thus
lim sup(| 7P| /(5™ xg) Y<im sup(i1, /6™ xg) +11,1/G6™* *g) ).
<H(1-Q".
Since Q is any number in the interval (-%— 1) it follows that

)
T:+J=o( ( pa+ *q)n) as required.

[t may be remarked that for ¢,=1, #=0, 1,--, our theorem reduces to the

theorem of Cass [1]. .
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constant encouragement and able guidance during the preparation of this paper.

Kuqushetra University,
- Kurukshetra, India.

REFERENCES

(1] Cass, F.P.: Convexity Theorems for Norlund and strong Norlund summability, Math.
Z. 112, 357—363(1969).

{2] Hardy, G.H.: Divergent series, Oxford 1949.
(3] Sinha, R.: Construction of a scale of (N,p,q) method, (communicated).

[4] Zygmund, A. :Sur un theoreme de la theoreme de la theorie de la sommabilite. Math.
Z. 25,291—296 (1926). '



