Kyungpook Math. J.
Volume 13, Number 1
June, 1973

A NOTE ON AN INTERSECTION THEOREM IN BANACH SPACE

By R.N. Mukherjee

Introduction.

Let X be a real Banach Space. Assume that $X=A \oplus B$, i. e. X is the direct sum of two subspaces $A \subset X$ and $B \subset X$.

Let $f: A \rightarrow X$ and $g: B \rightarrow X$ and $h: A \rightarrow X$ be three continuous mappings. We have given conditions on f, g, and h such that $f(A) \cap g(B) \cap h(A) \neq \phi$.

1. In [1] Kannan has given a theorem concerning simultaneous fixed points of two mappings in a metric space. We give here a version of the theorem in a Banach Space.

THEOREM A. Let E be a Banach Space. If T_{1} and T_{2} are continuous mappings from E into E such that

$$
\left\|T_{1}(x)-T_{2}(y)\right\| \leq \beta\left\{\left\|x-T_{1}(x)\right\|+\left\|y-T_{2}(y)\right\|\right\}
$$

where $x, y \in E$ and $0<\beta<\frac{1}{2}$, then T_{1} and T_{2} have a common fixed point.

2. An intersection theorem in Banach Space.

By $Q_{A}: X \rightarrow A$ and $Q_{B}: X \rightarrow B$ we denote the projection mappings of X onto A and X onto B respectively. The mappings Q_{A} and Q_{B} are linear and we have

$$
\left\|Q_{A} x\right\| \leq\left\|Q_{A}\right\|\|x\|, \quad\left\|Q_{B} x\right\|<\left\|Q_{B}\right\|\|x\|
$$

for all x in X, where $\left\|Q_{A}\right\|$ and $\left\|Q_{B}\right\|$ are the norms of Q_{A} and Q_{B} respectively. Let F, G and H are mappings from X into X and define the mappings T_{1} and T_{2} as follows:

$$
\begin{aligned}
& T_{1}=F \circ Q_{A}-G \circ Q_{B} \\
& T_{2}=H \circ Q_{A}-G \circ Q_{B} .
\end{aligned}
$$

TheOREM 1. Let $X=A \oplus B$ and let $f: A \rightarrow X, g: B \rightarrow X$ and $h: A \rightarrow X$ be such that $f(a)=a-F(a)$, for all a in A.

$$
\begin{aligned}
& g(b)=b-G(b), \text { for all } b \text { in } B \\
& h(a)=a-H(a), \text { for all } a \text { in } A
\end{aligned}
$$

and also T_{1} and T_{2} satisfy the hypothesis of theorem A above. Then $f(A) \cap g(B)$ $\cap h(A) \neq \phi$.

Proof of theorem 1.

Since $X=A \oplus B$, any element x in X can be written as $x=a-b$ where $a \in A$ and $b \in B$. Since from theorem A, T_{1} and T_{2} have a common fixed point which is x_{0} say with representation $x_{0}=a_{0}-b_{0}$, we have,

$$
T_{1}\left(x_{0}\right)=x_{0}
$$

i. e. $\quad F \circ Q_{A}\left(x_{0}\right)-G \circ Q_{B}\left(x_{0}\right)=a_{0}-b_{0}$
i.e. $F\left(a_{0}\right)-G\left(b_{0}\right)=a_{0}-b_{0}$
in other words

$$
a_{0}-F\left(a_{0}\right)=b_{0}-G\left(b_{0}\right)
$$

also we have

$$
T_{2}\left(x_{0}\right)=x_{0}
$$

i. e. $\quad H \circ Q_{A}\left(x_{0}\right)-G \circ Q_{B}\left(x_{0}\right)=a_{0}-b_{0}$
i.e. $\quad H\left(a_{0}\right)-G\left(b_{0}\right)=a_{0}-b_{0}$
i.e. $\quad a_{0}-H\left(a_{0}\right)=b_{0}-G\left(b_{0}\right)$
and therefore $\quad f(A) \cap g(B) \cap h(A) \neq \phi$.
In case f, g and h are linear mappings the conditions on f, g and h can be given in terms of the norms of the linear mappings F, G and H to make sure that $f(A) \cap g(B) \cap h(A) \neq \phi$.

THEOREM 2. Let $X=A \oplus B$ and let f, g and h are linear continuous mappings as shown in respective subspaces of theorem 1. Then if

$$
\|F\|\left\|Q_{A}\right\|+\|G\|\left\|Q_{B}\right\|<\frac{\beta}{1+\beta}
$$

and

$$
\begin{equation*}
\|H\|\left\|Q_{A}\right\|+\|G\|\left\|Q_{B}\right\|<\frac{\beta}{1+\beta} \tag{1}
\end{equation*}
$$

then $\quad f(A) \cap g(B) \cap h(A) \neq \phi$.

Proof of theorem 2.

Proof lies in observing the fact that the conditions in (1) imply that $F \circ Q_{A}-$ $G \circ Q_{B}$ and $H \circ Q_{A}-G \circ Q_{B}$ satisfy the hypothesis of theorem A. We start with the inequality

$$
\begin{align*}
& \left\|F \circ Q_{A}(x)-G \circ Q_{B}(x)-H \circ Q_{A}(y)+G \circ Q_{B}(y)\right\| \\
& \quad \leq \beta\left\{\left\|x-F \circ Q_{A}(x)+G \circ Q_{B}(x)\right\|+\left\|y-H \circ Q_{A}(y)+G \circ Q_{B}(y)\right\|\right\} \tag{2}
\end{align*}
$$

Now left hand side of (2) is

$$
\leq\left(\|F\|\left\|Q_{A}\right\|+\|G\|\left\|Q_{B}\right\|\right)\|x\|+\left(\|H\|\left\|Q_{A}\right\|+\|G\|\left\|Q_{B}\right\|\right)\|y\|
$$

also

$$
\beta\left\{\left\|x-F \circ Q_{A}(x)\right\|-\left\|G \circ Q_{B}(x)\right\|\right\}+\beta\left\{\left\|y-H \circ Q_{A}(y)\right\|-\left\|G \circ Q_{B}(y)\right\| \leq\right. \text { R. H.S. }
$$

since

$$
\left\|G \circ Q_{B}(x)\right\| \leq\|G\|\left\|Q_{B}\right\|\|x\|, \text { for all } x \text { in } X,
$$

we have

$$
\beta\left\{\left\|x-F \circ Q_{A}(x)\right\|-\|G\|\left\|Q_{B}\right\|\|x\|\right\}+\beta\left\{\left\|y-H \circ Q_{A}(y)\right\|-\|G\|\left\|Q_{B}\right\|\|y\|\right\} \leq \text { R. H.S. }
$$

from this we get

$$
\beta\left\{\|x\|-\left\|F \circ Q_{A}(x)\right\|-\|G\|\left\|Q_{B}\right\|\|x\|\right\}+\beta\left\{\|y\|-\left\|H \circ Q_{A}(y)\right\|-\|G\|\left\|Q_{B}\right\|\|y\| \leq\right. \text { R. H.S. }
$$ therefore

$\beta\left[\|x\|\left\{\left(1-\|G\|\left\|Q_{B}\right\|\right)-\|F\|\left\|Q_{A}\right\|\right\}\right]+\beta\left[\|y\|\left\{\left(1-\|G\|\left\|Q_{B}\right\|\right)-\|H\|\left\|Q_{A}\right\|\right\}\right] \leq$ R. H. S.
therefore if

$$
\|F\|\left\|Q_{A}\right\|+\|G\|\left\|Q_{B}\right\| \leq \beta\left[\left(1-\|G\|\left\|Q_{B}\right\|\right)-\|F\|\left\|Q_{A}\right\|\right]
$$

and

$$
\begin{equation*}
\|H\|\left\|Q_{A}\right\|+\|G\|\left\|Q_{B}\right\| \leq \beta\left[\left(1-\|G\|\left\|Q_{B}\right\|\right)-\|H\|\left\|Q_{A}\right\|\right] \tag{3}
\end{equation*}
$$

then (2) is satisfied.
The conditions (3) can be written as
and

$$
\|F\|\left\|Q_{A}\right\|+\|G\|\left\|Q_{B}\right\| \leq \frac{\beta}{1+\beta}
$$

which completes the proof.
COROLLARY to theorem 2.
Let R denote a set of real numbers. Let $X=A \oplus B$ and $f: R \times A \rightarrow X, g: R \times B \rightarrow X$ and $h: R \times A \rightarrow X$ be continuous linear mappings such that

$$
f(\lambda: a)=a-\lambda F(a) \text { for all a in } A
$$

and λ is in R,

$$
\begin{aligned}
& g(\lambda ; b)=b-\lambda G(b) \text { for all } b \text { in } B \\
& h(\lambda ; a)=a-\lambda H(a) \text { for all } a \text { in } A .
\end{aligned}
$$

Then if

$$
|\lambda|\left\{\|F\|\left\|Q_{A}\right\|+\|G\|\left\|Q_{B}\right\|\right\} \leq \frac{\beta}{1+\beta}
$$

The proof is similar to the proof of theorem 2.

State University of New York at Stony Brook, Stony Brook, N. Y.

REFERENCES

[1] Kannan, R, On a fixed point theorem in a metric space, Bull. Cal. Math. Soc., No l and 2, pp. 71-76, 1968.
[2] Vignoli, Alfonso, An intersection theorem in Banach Space, Lincei-Rend. Sc. fis. mat. e nat. Vol XLIX- pp. 180-183, February 1970.

