uil. Korean Math. Soc. Vol. 10 (1973), pp. 49-56

STRUCTURE OF COUPLE CATEGORIES

CHANG KU IM

1. Introduction

Let S be the category of all sets and C be a category. A covariant functor $F: C \rightarrow S$ will be called a *grounding* of C. Dually, a contravariant functor $F: C^* \longrightarrow S$ is called a cogrounding of C, where C^* is the dual category of C. Cat(C, S) denotes the functor category, which has functors from a small category C to S for objects and for morphisms the natural transformations between two functors from C to S, and Co(C, S) denotes the couple category of C $\lceil 5 \rceil$.

It is known that any small category C can be embedded into Cat(C, S) and Co(C, S)

In this note, we shall be to establish the results on the conjugates of groundings and cogroundings of a category C and some results on couple categories. Next we shall prove that the functor category $Cat(C^*, S)$ and the full subcategory Con(C, S) of Co(C, S), has the natural couple (G, G^*, m) for objects and for morphisms the conjoint transformations $(G, G^*, m) \longrightarrow (G', G'^*, m)$, are equivalent.

2. Conjugates of groundings and cogroundings

Any cogrounding F of a category \mathbb{C} is said to be *dominated* by a set S of objects of \mathbb{C} if every set F(A), A is an objects in \mathbb{C} , is a union of sets F(f) [F(B)], B ranging over the elements of S and f ranging over morphisms in $\operatorname{Hom}_{\mathbb{C}}(A, B)$.

If F is dominated by some set of objects, it is called *proper*.

DEFINITION 1. Let $F: \mathbb{C}^* \longrightarrow \mathbb{S}$ be a cogrounding of a category \mathbb{C} . The grounding $F^*: \mathbb{C} \longrightarrow \mathbb{S}$, such that for each object A of \mathbb{C} , $F^*(A)$ is the set $\operatorname{Hom}(F, h_A)$ of all natural transformations from F to $h_A = \operatorname{Hom}_{\mathbb{C}}(\ , A)$ and for each morphism $f: A \longrightarrow A'$ in \mathbb{C} , $p \in F(W)$ and $\phi \in F^*(A)$,

$$[F^*(f)(\phi)]_W(p) = f \cdot \phi_W(p)$$

is called the conjugate of F.

Dually we can define the conjugate G_* of grounding G as follows;

$$G_*(A) = \text{Hom } (G, h^A),$$

 $[G_*(f)(\xi)]_{W}(p) = \xi_{W}(p) \cdot f$

for $p \in G(W)$, $f; A \longrightarrow B$, $\xi \in G_*(B)$.

PROPOSITION 1. If a cogrounding F of C and its conjugate F^* are proper then there is a natural transformation from F to F_*^* .

Proof. Let $\eta: F \longrightarrow F_*$ be as follows: For each $A \in Ob(\mathbb{C})$ (=the class of objects of \mathbb{C}),

$$\eta_A: F(A) \longrightarrow F_*^*(A) = \operatorname{Hom}(F^*, h_A)$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

where $p_B(p^*)=p^*_A$ (p) for all $p^*\in F^*(B)$. Then for $g:A\longrightarrow A'$ in C and $p'\in F(A')$,

where $h^{(g)}: h^{A'} \longrightarrow h^A$.

For $B \in Ob(\mathbb{C})$ and $q \in F^*(B)$

$$[\eta_A[F(g)(p')]]_B(q) = q_A[F(g)(p')]$$

while

$$[h^{(g)} \cdot \eta_A(p')]_B(q) = h_B^{(g)} [\eta_{A'}(p')]_B (q)$$
$$= q_{A'}(p') \cdot g.$$

Since $q: F \longrightarrow h_B$ is a natural transformation, we have

$$q_{A}[F_{(g)}(p')]=h^{(g)}[q_{A'}(p')]=q_{A'}(p')\cdot g$$

Therefore $\eta: F \longrightarrow F_*^*$ is a natural transformation.

We say that a grounding (cogrounding) F of C is reflexive if F is proper, and F^* is proper and the natural transformation $\eta: F \longrightarrow F_*$ is the natural equivalence.

PROPOSITION 2. Let $\Gamma_1: \operatorname{Cat}(\mathbb{C}^*, \mathbb{S}) \longrightarrow \operatorname{Cat}(\mathbb{C}, \mathbb{S})$ and $\Gamma_2: \operatorname{Cat}(\mathbb{C}, \mathbb{S})^* \longrightarrow \operatorname{Cat}(\mathbb{C}^*, \mathbb{S})$ be two contravariant functors such that $\Gamma_1(F) = F^*$ for all $F \in \operatorname{Ob}(\operatorname{Cat}(\mathbb{C}^*, \mathbb{S}))$ and for $\eta: F_1 \longrightarrow F_2$ in $\operatorname{Cat}(\mathbb{C}^*, \mathbb{S})$, $\xi \in F_2^*(X)$, $[\Gamma_1(\eta)]_X(\xi) = \xi \cdot \eta$, and for $G \in \operatorname{Ob}(\operatorname{Cat}(\mathbb{C}, \mathbb{S}), \ \mu: G_1 \longrightarrow G_2$ in $\operatorname{Cat}(\mathbb{C}, \mathbb{S}), \ \phi \in G_{2*}(X)$, $\Gamma_2(G) = G_*, \ [\Gamma_2(\mu)]_X(\phi) = \phi \cdot \mu$. Then the two functors $\operatorname{Hom}_{\operatorname{Cat}(\mathbb{C}^*, \mathbb{S})}(-, \Gamma_2)$ and $\operatorname{Hom}_{\operatorname{Cat}(\mathbb{C}, \mathbb{S})}(-, \Gamma_1)$ from the product category $\operatorname{Cat}(\mathbb{C}^*, \mathbb{S})^* \times \operatorname{Cat}(\mathbb{C}, \mathbb{S})^*$ to \mathbb{S} are naturally equivalent, where for $(F, G) \in \operatorname{Cat}(\mathbb{C}^*, \mathbb{S})^* \times \operatorname{Cat}(\mathbb{C}, \mathbb{S})^*$,

[Hom $(-, \Gamma_1-)$] $(F, G) = \text{Hom}(G, \Gamma_1(F) = F^*)$ and $[\text{Hom}(-, \Gamma_2-)]$ $(F, G) = \text{Hom}(F, \Gamma_2(G) = G_*)$ respectively.

Proof. For each $(F, G) \in Cat(\mathbb{C}^*, \mathbb{S})^* \times Cat(\mathbb{C}, \mathbb{S})^*$, we define a mapping $\phi_{(F,G)} : \text{Hom } (G,F^*) \longrightarrow \text{Hom}(F,G_*)$ as follows; for $\phi \in \text{Hom}(G,F^*)$, $p \in F(X)$, $q \in G(W)$ and $X, W \in Ob(\mathbb{C})$

$$[[\phi_{(F,G)} (\phi)]_X(p)]_W(q) = [\phi_W(q)]_X(p).$$

Then for $\phi_1, \phi_2 \in \text{Hom}(G, F^*)$, if

$$\varphi_{(F,G)}(\phi_1) = \psi_{(F,G)}(\phi_2),$$
$$[[\phi_1]_W(q)]_X(p) = [[\phi_2]_W(q)]_X(p)$$

for all $p \in F(X)$ and $q \in G(W)$. We have $[\phi_1]_W = [\phi_2]_W$ and $\phi_1 = \phi_2$. Next we shall show that the diagram

$$\begin{array}{c|c} \operatorname{Hom}(G_{1}, F_{1}^{*}) & \xrightarrow{\phi_{(F_{1},G_{1})}} & \operatorname{Hom}(F_{1}, G_{1}^{*}) \\ \operatorname{Hom}(\eta, \Gamma_{1}(\nu)) & & & \operatorname{Hom}(\nu, \Gamma_{2}(\eta)) \\ \operatorname{Hom}(G_{2}, F_{2*}) & \xrightarrow{\phi_{(F_{2}G_{2})}} & \operatorname{Hom}(F_{2}, G_{2*}) \end{array}$$

where $\eta: G_2 \longrightarrow G_1 \in Cat$ (C, S) and $\nu: F_2 \longrightarrow F_1 \in Cat$ (C*, S), is commutative. For each $\phi \in Hom(G_1, F_1^*)$,

$$[\operatorname{Hom}(\nu, \Gamma_2(\eta)) \cdot \phi_{\scriptscriptstyle (F_1,G_1)}](\phi) = \Gamma_2(\eta) \cdot \phi_{\scriptscriptstyle (F_1,G_1)}(\phi) \cdot \nu$$

and for $p_2 \in F_2(X)$, $q_2 \in G_2(W)$,

$$\begin{split} & \left[\left[\Gamma_{2}(\eta) \cdot \psi_{\scriptscriptstyle (F_{1},G_{1})}(\phi) \cdot \nu \right]_{X}(p_{2}) \right]_{W}(q_{2}) \\ &= \left[\left[\Gamma_{2}(\eta) \right]_{X} \cdot \left[\psi_{\scriptscriptstyle (F_{1},G_{1})}(\phi) \right]_{X} \cdot \nu_{X}(p_{2}) \right]_{W}(q_{2}) \\ &= \left[\left[\psi_{\scriptscriptstyle (F_{1},G_{1})}(\phi) \right]_{X} \nu_{X}(p_{2}) \right]_{W} \cdot \left[\eta_{W}(q_{2}) \right] \\ &= \left[\phi_{W} \left[\eta_{W}(q_{2}) \right] \right]_{X} \cdot (\nu_{X}(p_{2})). \end{split}$$

While

$$\begin{split} & \left[\left[\left[\phi_{(F_2 \circ G_2)} \cdot \operatorname{Hom} \left(\eta, \ \Gamma_1(\nu) \right) \right] (\phi) \right]_X(p_2) \right]_W(q_2) \\ &= \left[\left[\phi_{(F_2 \circ G_2)} \cdot (\Gamma_1(\nu) \cdot \phi \cdot \eta) \right]_X(p_2) \right]_W(q_2) \\ &= \left[(\Gamma_1(\nu) \cdot \phi \cdot \eta)_W(q_2) \right]_X(p_2) \\ &= \left[\left[\Gamma_1(\nu) \right]_W \cdot \phi_W \cdot \eta_W(q_2) \right]_X(p_2) \\ &= \left[\phi_W \cdot \eta_W(q_2) \right]_X(\nu_X(p_2)). \end{split}$$

Therefore ϕ is a natural equivalence.

A diagram in a category C is a functor $D: I \longrightarrow C$ whose domain category I is a small category, [2], [3].

DEFINITION 2. The *limit functor* \wedge_D of a diagram D in a category C is the functor

where for all $W \in Ob(\mathbb{C})$, K_W is the constant functor, and a *limit* of the diagram D is a representation (W_0, ϕ) of \bigwedge_D (cf. [6]), where ϕ is a natural equivalence from h_W to \bigwedge_D . Dually we can define the colimit functor and colimit of a diagram in \mathbb{C} .

PROPOSITION 3. There exists a natural equivalence from the limit functor of a diagram D in a category C to the conjugate of a grounding of C.

Proof. Let $D: I \longrightarrow C$ be a diagram in C and $\bigwedge_D = h_D \cdot K$ be the limit functor of D. If we define $G_D: C \longrightarrow S$ as follows; $G_D(X)$ is a disjoint union $\bigcup_{i \in I} h^{D(i)}(X)$ of the sets $h^{D(i)}(X)$ for $X \subseteq Ob(C)$, and $[G_D(p)](f) = p \cdot f$ for $p: X \longrightarrow Y$ in C, $f \subseteq G_D(X)$, then G_D is a grounding of C. Let define the mapping $\phi_W: \Lambda_0(W) \longrightarrow G_{D_*}(W)$ for $W \subseteq ob(C)$ and $\phi \subseteq \Lambda_D(W)$ as follows; $[\phi_W(\phi)]_X(x) = x \cdot \phi \cdot (i)$

where $x \in h^{D(i)}(X) \subset G_D(X)$ and $i \in I$. On the other hand if we define the mapping $\phi_0(i) : K_W(i) \longrightarrow D(i)$ as follows; $\phi_0(i) = [\phi_{D(i)}][1_{D(i)})$ for an element $\phi \in G_{D*(W)}$ and $i \in I$, then since ϕ is a natural transformation, $h^W(D(m)) \cdot \phi_{D(i)} = \phi_{D(i)} \cdot G_D(D(m))$ for $m : i \longrightarrow j$ in I Hence for $1_{D(i)} : D(i) \longrightarrow D(i)$ (in C),

$$\begin{bmatrix} h^{W}(D(m)) \cdot \phi_{D(i)} \end{bmatrix} (1_{D(i)}) = h^{W}(D(m)) [\phi_{D(i)} (1_{D(i)})] \\
= h^{W}((D(m)) \phi_{0}(i) = D(m) \phi_{0}(i) \\
[\phi_{D(i)} \cdot G_{D}(D(m))] (1_{D(i)}) = \phi_{D(j)} (1_{D(j)}) = \phi_{0}(j),$$

that is, the diagram

$$K_{W}(i) = W \longrightarrow D(i)$$

$$\downarrow D(m)$$

$$K_{W}(j) = W \longrightarrow D(j)$$

commutes. Therefore ϕ_0 is a natural transformation from K_W to D and if we take $[\phi_W(\phi_0)] = \phi$, then ϕ_W is an isomorphism. For a morphism $\alpha: V \longrightarrow W$ $\in \mathbb{C}$, consider the diagram

$$L_{D}(W) \xrightarrow{\phi_{W}} G^{*}(W)$$

$$L_{D}(\alpha) \downarrow \qquad \qquad \downarrow G_{D*}(\alpha)$$

$$L_{D}(V) \xrightarrow{\phi_{V}} G_{*}(V).$$

$$(1)$$

while

$$\begin{aligned}
& [[\phi_{V} \cdot L_{D}^{(\alpha)}](\phi)]_{X}(x) \\
&= [\phi_{V} \cdot (\phi \cdot K(\alpha))]_{X}(x) \\
&= x \cdot [(\phi \cdot K(\alpha))(j)] \\
&= x \cdot [\phi(j) \cdot K(\alpha)(j)] = x \cdot \phi(j) \cdot \alpha
\end{aligned} \tag{3}$$

From (2) and (3) we prove that the diagram (1) is commutative. Hence we have the natural equivalence $\phi: L_D \cong G_{D*}$. This completes the proof.

3. Couple categories

This section of the paper is a sequel to my paper on couple category [5]. DEFINITION 3. A coupling of a cogrounding F and a grounding G of a category C is a function.

$$m: \bigcup_{(X,Y) \in C \times C} F(X) \times G(Y) \longrightarrow \bigcup_{(X,Y) \in C \times C} \operatorname{Hom}_{C}(X,Y)$$

such that

$$F(X) \times G(Y) \longrightarrow \operatorname{Hom}_{\mathbb{C}}(X, Y)$$

$$(p, q) \longmapsto m(p, q)$$

and for $f: W \longrightarrow X$ and $g: Y \longrightarrow Z$ in C,

$$m(F(f)(p), G(g)(q)) = g \cdot m(p \cdot q) \cdot f.$$

PROPOSITION 4. There is a one-to-one corespondence between couplings m of F and G, and natural transformation $\mu: G \longrightarrow F^*$ defined by

$$[\mu_{Y}(q)]_{X}(p) = m(p,q) \tag{4}$$

for $p \in F(X)$, $q \in G(Y)$.

Proof. Let K be a set of all couplings of F,G, and $\phi: K \longrightarrow \operatorname{Hom}(G, F^*)$ such that $\phi(m) = \mu$ where μ satisfies the condition (4). Then $\phi(m) = \phi(n)$ implies m=n. For any $\operatorname{Hom}(G,F^*)$, let m be a function from $\bigcup F(X) \times G(Y)$ to $\bigcup \operatorname{Hom}(X,Y)$ satisfying the condition (4). Then for $f: W \longrightarrow X$ and $g: Y \longrightarrow Z$

$$m(F(f)(p), G(g)(q)) = [\mu_Z(G(g)(q))]_W(F(f)(p))$$

$$= [h_g \cdot \mu_Y(q)]_W(F(f)(p))$$

$$= g[[\mu_Y(q)]_W(F(f)(p)]$$

$$= g[h_Y(f) \cdot [\mu_Y(q)]_X(p)]$$

$$= g[[\mu_Y(q)]_X(p) \cdot f$$

$$= g \cdot m(p \cdot q) \cdot f$$

Hence m is a coupling of F, G. This completes the proof.

A grounding couple on a category C is a triple $F = ('F, F', m_F)$ consisting of a cogrounding 'F, grounding F' of C and coupling m_F of 'F, F'.

Morphisms $F = ('F, F', m_F) \longrightarrow G = ('G, G', m_G)$ of grounding couples are conjoint transformations $\eta = ('\eta, \eta')$ which are ordered pair of natural transformations $'\eta : 'F \rightarrow 'G$, $\eta' : G' \rightarrow F'$, satisfying $m_G(\eta'_X(p), q) = m_F(p, \eta'(q))$ for $p \in 'F(X)$, $q \in G'(Y)$.

The category, which has these grounding couples for objects and for morphisms the conjoint transformations, is called a *couple category* of C and we denote it by Co(C, S) [5].

Let G be a cogrounding of a category C and a mapping

 $m: \bigcup_{(X,Y) \in C \times C} G(X) \times G^*(Y) \longrightarrow \bigcap_{(X,Y) \in C \times C} \operatorname{Hom}_{\mathbb{C}}(X,Y)$ satisfy $m(p,q) = q_X(p)$ for $p \in G(X)$ and $q \in G^*(Y)$. Then for $f: W \longrightarrow X$ and $g: Y \longrightarrow Z$ in \mathbb{C} , we have

$$m(G(f)(p), G^*(g)(q)) = [G^*(g)(q)]_{W}(G^*(f)(p))$$

$$= [h^{(g)}(q)]_{W}((G(f)(p)))$$

$$= h_{W}^{(g)}[q_{W}(G(f)(p))]$$

$$= q_{W}(G(f)(p))$$

$$= h_{W}^{(g)}q_{X}(p)$$

$$= g \cdot q_{X}(p) \cdot f$$

$$= g \cdot m(p \cdot q) \cdot f$$

Hence m_G is a coupling of G and G^* . A couple (G, G^*, m_G) $(\in Co(C, S))$ is called a *natural couple*. For two natural couples (G, G^*, m_G) and $(G', G'^*, m_{G'})$ let $\eta: G \longrightarrow G'$ and $\eta^*: G'^* \longrightarrow G^*$ be natural transformations such that $\eta^*_{Y}(q) = q \cdot \eta$ for $q \in G'^*(Y)$. Then for $p \in G(x)$ and $q \in G'^*(Y)$

$$m(p, \eta^*_{Y}(q)) = [\eta^*_{Y}(g)]_{X}(p)$$

$$= [q \cdot \eta]_{X}(p)$$

$$= q_{X}\eta_{X}(p)$$

$$= m(\eta_{X}(p), q).$$

Hence (η, η^*) is conjoinnt transformation from (G, G^*, m_G) to $(G', G'^*, m_{G'})$. Thus we have the full subcategory of Co(C, S), which has natural couples for objects and for morphisms conjoint transformations (η, η^*) . The full subcategory of natural couples is called the *natural couple category* and denoted by Con(C, S).

LEMMA. A functor $T: \mathbf{A} \longrightarrow \mathbf{B}$ is an equivalence if and only if there is a functor $S: \mathbf{B} \longrightarrow \mathbf{A}$ together with natural equivalences

$$\varphi: 1_B \cong T \cdot S$$
 and $\psi: ST \cong 1_A$, [4]

PROPOSITION 5. The functor $\psi : \operatorname{Cat}(\mathbb{C}^*, \mathbb{S}) \longrightarrow \operatorname{Con}(\mathbb{C}, \mathbb{S})$ such that $\psi(G) = (G, G^*, m_G)$ for all $G \in \operatorname{Ob}(\operatorname{Cat}(\mathbb{C}^*, \mathbb{S}))$ and $\psi(\eta) = (\eta, \eta^*)$ for all morphisms η in $\operatorname{Cat}(\mathbb{C}^*, \mathbb{S})$ is an equivalence functor.

Proof. Let $\phi: \operatorname{Con}(\mathbf{C}, \mathbf{S}) \longrightarrow \operatorname{Cat}(\mathbf{C}^*, \mathbf{S})$ be a functor such that $\phi(G, G^*, m_G) = G$ and $\phi(\eta, \eta^*) = \eta$ for $(\eta, \eta^*): (G, G^*, m_G) \longrightarrow (G', G'^*, m_{G'})$ and $\varphi: 1_{\operatorname{Cat}(\mathbf{C}^*, \mathbf{S})} \longrightarrow \phi \cdot \psi$. Then $\varphi_G: 1_{\operatorname{Cat}(\mathbf{C}^*, \mathbf{S})}(G) \longrightarrow \phi \cdot \psi(G) = G$ is an identity morphism and φ is a natural equivalence. Similarly we can obtain the natural equivalence $\varphi': \psi \phi \sim 1_{\operatorname{Con}(\mathbf{C}^*, \mathbf{S})}$. By the lemma the functor ψ is an equivalence.

COROLLARY 1. The functor category $Cat(C^*, S)$ is embedded into the couple category Co(C, S) and C is embedded into Con(C, S).

A grounding couple $F = ('F, F', m_F)$ is said to be separated if $\mu' : F' \longrightarrow 'F^*$ and $'\mu : 'F \longrightarrow F_*'$ are monomorphic ([5], [3]). A cogrounding G is said to be separated if its natural couple (G, G^*, m_F) is separated.

DEFINITION 4. A subcategory **A** of a category **B** is called a *separating* subcategory if for every two distinct morphisms $f, g: X \longrightarrow Y$ in **B**, there exist an object Z in **A** and $h: Y \longrightarrow Z$ such that $h \cdot f \neq h \cdot g$.

We can know that a cogrounding F of C is separated iff F and F^* are reflexive. By Proposition 5, we have the

COROLLARY 2. The natural couple category Con(C, S) is separated iff Cat(C, S) is separated.

References

- [1] J.R.Isbell, Adequate subcategories, Ill. J. Math 4 (1960), 541-552.
- [2] _____, Structure of categories, Bull. Amer. Math. Soc. 72 (1966) 619-655.
- [3] _____, Normal completions of categories (Lecture Notes in Math No. 47) Springer-verlag, Berlin (1967) 110-155

- [4] B.Mitchell, Theory of categories, Academic Press. NewYork, 1965.
- [5] C. K. Im, On couple categories, Bull. Korean Math. Soc, 9. (1972), 101-109.
- [6] S. Mclane, Categorical algebra, Bull. Amer. Math. Soc. 71 (1965), 40-106.

Inha University