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ON SEMI-SIMPLE RINGS AND THEIR COMPLETE
MATRIX RINGS

By Hai Joon Kin

1. Introduction.

Let R be a ring and M be a right R-module. In this paper we consider the class of
all large submodules of M and denote their total intersection by S(M). In section 2,
we prove S()M) coincides with the sum of all simple submodules of Af, the largest
semi-simple submodule in M. Applying this result to an arbitrary ring R whether or
not R contains the identity 1, we prove that the complete matrix ring R, of all nxn
matrices over R is semi-simple if the ring R is semi-simple as a right R.module Rp. This
proof is given in Section 3. We also investigate semi-simple right ideals of R and R,
and study their relations.

2. Preliminaries.

We call a submodule P of M large in M and write PS’M in case each non-zero sub-
module of A meets P. The aim of this section is to prove that S(A) coincides with
the sum of all simple submodules of )/ and to seek a necessary and sufficient condition
for a module to be semi-simple.

First, we introduce the definition:

DEFINITION. A submodule N of 3 is closed if and only if N has no proper large
extensions in M,

If M,2P;, then C is called a complement submodule of P in M in case C is a sub-
module which is maximal in the set of all submodules Q such that QN P=0. By Zorn's
lemma, if PN A=0, then there exists a complement submodule of P in A containing
A, By a complement submodule we mean a submodule which is a complement submodule
of some submodule of 3, It is easy to see that the closed submcdules of a module M
coincide with the complement submodules of 1L By this fact, P is large in M if and
only if P meets every non-zero clesed submodule of M. For, if P YK=0, then we can
choose a complement (=closed) submodule C of P containing K. If P meets every
non-zero closed submodule, then C=(, since CP=0 and so A=0. This shows that
P is large in M. From this we prove the following lemma:

LexivA 1. Let A and B be submodules of M. Then B is large in A if and only if
there exists a large submodule P of M such that B=A()P.

Proof. Assume that B&’A and K be a complement submodule of B in AL Put P=
B-—K. Since BN (ANK)=BNK=0 and ANK=0, ANP=AN(B+-K)=B+(ANK)=R.
Let D be a submodule of M with PND=0. Then also BN\ (K—D)=BN (PN (K—D))
=B (K-+0)=B{1K=0. By maximality of K, DCK, hence D=(B+K)(D=0. Thus
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P is large in M. If P is large in M, then P{}A is large in A for every submodule
A of M. This proves that B is large in A if B=A[]P where P is large in M.

Let N be any submodule of M. We consider S(N) in N, that is, the intersection of
all large submodules of N. Then the following relation holds between S(N) and S(M).

THEOREM 1. S(N)=S(M)N.

Proof. By Lemma 1, {P\N:PS'M}={Q: Q<’N} for any submodule N of M. It
follows that

S(M) NN=N{P: PS'M}NN
=0 {PNN: P’ M}
=N{Q: Q='N}
=S(N).

Let f:M—M’ be an epimorphism and P’ be large in M’. Then f~1P’'[1A=0 implies
P’} fA=0 so that 0=fA<P’. Thus AC fIfACF 1P’ N A=0, so f~1P’ is large in M.
Hence we obtain the following corollary:

COROLLARY 1. (1) Let f be an R-homomorphism of M into M'. Then £S(M)CS(M’).
(2) If N is a submodule of M, then (S(M)+N)/NSS{(M/N).

Proof. (1): Let y= fx,z=S(M), and let Q be an arbitary large submodule of FM.
Since f1Q is large in M, z=f-1Q so that y=fr=Q. Hence fS(M)ZS{(fM)S(M).
(2) is an immediate consequence of (1).

We call a2 module M is semi-simple if M is a direct sum of simple submodules. It is the
same thing to require that each submodule of M is a direct summand of M [1, p.55..

COROLLARY 2. M is semi-simple if and only if S(M)=M. Therefore S(M) is the
largest semi-simple submodule of M.

Proof. Assume that M is semi-simple and let A be any non-zero simple submodule of
M. Then for each large submodule P of M, A[1P+0 so that A=AP<P. Thus A<
S(M) and M=S(M). Conversely, if A is a submodule of M and B is any complement
submodule of 4 in M, then AEB is large in M and S(M)=M implies S(M)<=ASB
=M so that A is a direct summand of M. Hence M is semi-simple. By Theorem 1,
SSMH=SM) NSM)=S(M) and S(M) is semi-simple by the above result. If a
submodule P is semi-simple, then P=S(P)=PS(M)<ZS(M). Therefore S(M) is a
semi-simple submodule of M which contains every semi-simple submodule.

Immediately, we have:

COROLLARY 3. The total intersection S(M) of all large submodules of M is the sum
of all simple submodules of M.

It is easy to give an example for S(M/S(M))+0. But under some conditions we can
get S(M/S(M))=0. If M=S(M), itis clear. Now assume that M*=S(M) and we
prove S(M/S(M))=0 if S(M) is closed in M. Let P be a simple submodule of M=
M/S(M). Since there is a 1:1 correspondence between submodules of M and submodules
of M containing S(M), either P=S(M) or there are no submodules between P and S(M)
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where P is an inverse image of P by a projection map. If S(M) is not large in P,
then, since S(P)=PNS(M)=S(M), P is the only submodule which is large in P,
contradicting to S(P)=S(M). So S(M) is large in P. Thus we have the following:

COROLLARY 4. If M is a module in which S(M) is closed, then S(M/S(M))=0.

3. Semi-simple rings.

We now turn our attention to a ring R regarded as right R-module Rp. We call a
right ideal K (hence a right R-module) of R simple in case the only right ideals of R
contained in X arc 0 and K itself; K is semi-simple if it is the sum of simple right
ideals. In this section we characterize simple right ideals and semi-simple right ideals
of a ring R with the identity 1 and of the complete matrix ring R, of all » X » matrices
over R. Using these results and applying the results obtained in Section 2, we prove
that for any ring R {(whether or not R contains 1) S(R,)=(S(R)), and also prove that
if a ring R is semi-simple as a right R-module R, then so is its complete matrix
ring R,. First we consider a ring R with the identity 1. To avoid the complexity we
employ the following notations: For each right ideal K of R, and each p=1,2,---,n,
write

KO={A=(a,) =R, : a;=0 if i#p, ay=K, j=1,2 > n.}
and for each right ideal K of R,, and each p, put K, as follows:
K p={asR:a=a, for some A= (a;;) in K]}.

First, we prove that K, and K¢, are right ideals of R, and R respectively.

LEMMA 2. For each p=1,2,--,n, K, and K, are right ideals of R, and R respec-
tively. Furthermore K,,-—-;K,,‘” and KQ,Z:';(K("))"‘

Proof. We denote the matrix units of R, by E;;. Let A=(a;;) and B=(b;;) in K,»
and C={(c;;) be an arbitrary element of R,. Then A—B=(a;;—&;;) and a;;—b;;=0 if i#p

and a,;—&,;=K for each j, so that K,* is closed under subtraction. For each r,s=
1,2, n Al E,)=( a;;E;) (c,sE,g)=¥a,-,c,sEz-g is a matrix whose i-th rows are all
37

zero if i%#p and a,c¢,. in K. But AC is a sum of such matrices, and therefore AC=
K, ». This proves K,*® is a right ideal in R,. Furthermore, it is easy to check K,

=P;K,,‘P’. Next we will show that K, is a right ideal in R (p=1,2,-,2.) and KC

gl(K(p)),,. Since K is closed under addition (and subtraction), the same is true for K.

Let @ in K¢, and r=R. Then by definition of K, there exists a matrix A=Ya;;E;
in K with a,=a. Since a matrix A(rE)=2aurE; is in K and its (p,1)-position
element is apr=ar, ar&K¢,. Thus K, is a right ideal in R. Let A=3a;E;; be any
element of K. Then for any ¢=1,2, -+, n, B=AEq= (3 a;;E;;) En="2_a: E;; is a matrix

in K whose (p,1)-position element is a@p,. This is true for each »=1,2,--,7, and
therefore @, =K, for each g¢. Since apEs = (K(p), and A=PZ}apquqE§:'(K(p)),,, it
.9 P=1
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follows that K is contained in ?Z.(Kc,)),,. This completes the proof of lemma.
THEOREM 2. If K is a simple right ideal of R, then K(p) is a simple right ideal of
R, for each p=1,2, -, n, and therefore K, is semi-simple in R,.

Proof. Let N be a right ideal of R, such that N&K,*’. Then N, is a right ideal
of R Satisfying (N(»),,(p)'—_—N. FOI, if A=(aij)EN, then AEjlzzaijEilzaijplgN

and a@,;=N, for each j. It follows that A=(N(»),? and hence NS (N¢,)a?.
Suppose now that A= (N¢,),” and let us show that A=N. Let a=a,; be an element
in the (p, j)-position of A. Then there exists a matrix B=(4;;) =N with 6, =a. Since

BEy=SbaE=bnEy=aE, €N, A=Sa,E;=N and so (N¢»),®=N. Since NSK,®,
Np»ESK, and since K is simple, either Ny =0 or N¢»p=K. i.e., N=0 or N=K,»,
This proves that K, is simple and since Kn=:é@K,,‘P) is a direct sum of simple right

ideals, K, is semi-simple.
Now the following lemma can be proved straightforwardly, so the proof will be
omitted.

LEMMA 3. If K=2_:'_,K,- is @ sum of right ideals of R, then K,,<1’)=,(§IK,-),,(I’)=
3K, .

COROLLARY 5. If K is semi-simple in R, then so is K, for each p=1,2, -, n.

Proof. Write K=§K,- where K; is simple in R. Then by Theorem 2, for each i<=1,
(K;),® is a simple right ideal of R,. Since K,,‘f’)—'—’_;l(K;),,‘p’ is a sum of simple right
ideals, K, is semi-simple for each p=1,2, -, n :

Since, for each right ideal K of R, we have K,,r;;K,,(P), we obtain the following
corollary:

COROLLARY 6. If K is semi-simple in R, then so is K, in R,

THEOREM 3. If R is a ring with the identity 1, then (S(R)), is semi-simple in R..

Proof. Write S(R) =;EZ1Ki where K; are simple right ideals of R. Then (S(R)),®
:‘_:,_._'I(Ki),ﬂ” and each (X)), is simple by Theorem 2, so that (S(R)),® is semi-
simple. But (S (R)),,:i};(S (R)),” is a sum of semi-simple right ideals in R,, and
therefore (S(R)), is semi-simple.

We know that S(M) is the largest semi-simple submodule of M by Corollary 2.
Therefore (S(R)), is contained in S(R,) by the above result. To prove the converse
inclusion, we need the following lemma:

LEMMA 4. If K is a simple (resp. large) right ideal of R,, then there exists a semi-
simple (resp. large) right ideal K of R such that K<K,.

Proof. Consider a right ideal K(,,={a=R : a=a, for some A={(z;) =K} and let K=
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:glK(p). Then by Lemma 2, K is a right ideal of R such that KCK,. First assume
that K is simple and we show that K, is simple in R. For this purpose, let N, be
a right ideal of R such that N, ©K(> and let N= (N(,,)),‘(P)—I—gPR,,G), that is, any
matrix A= (a;;) in N is of the form: for each j=1L,2, «:-,7,4,;N¢, and if i¥p, then
a;; is an arbitary element of R. We note that NN K={A=K:A=(a;;), a,;&N, for
each j}. Since K is simple, it follows that N1 K is Kor 0 and so N¢,=K» or N¢p»
=0, that is, X, is simple for each p=1,2,+--,n. Thus X is a semi-simple right ideal
of R such that K&K,. If K is large in R,, then K is also large in R since K&K,
For, if P is a right ideal of R such that K P=0, then (K1 P),=K,NP,=0 so that
P,=0 and P=0. This completes the proof of lemma.

The following result is an immediate consequence of Lemma 4 and Theorem 3.
COROLLARY 7. If R is a ring with the identity 1, then S(R,)=(S(R)),.

Now we prove the following theorem which is a generalization of the above result.
TEHOREM 4. For any ring R, S(R,)=(R)),.

Proof. If 1=R, then it is through. I 1R, then we imbed R into the ring R’
with the identity 1 as an ideal and by the case already proved we have S(R’,)=
(S(R’)),. Theorem 1 then shows that S(R)==S(R’) (1 R. Since R, is an ideal in R’,, we
can again apply Theorem 1 and obtain

SR =RNSR)=R.N (S(R)),=(RNSR))=(S(R))

This completes the proof of the theorem.
By the above theorem, we can prove the following theorem which is the main result
of this section.

THEOREM 5. If a ring R is semi-simple as a right R-module Ry, then so is R,.

Proof. Theorem 4 ensures that S(R,)=(S(R)),=R, if R is semi-simple. Therefore
R, is also semi-simple by Corollary 2.
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