ON SEMI-SIMPLE RINGS AND THEIR COMPLETE MATRIX RINGS

By HAI JOON KIM

1. Introduction.

Let R be a ring and M be a right R-module. In this paper we consider the class of all large submodules of M and denote their total intersection by S(M). In section 2, we prove S(M) coincides with the sum of all simple submodules of M, the largest semi-simple submodule in M. Applying this result to an arbitrary ring R whether or not R contains the identity 1, we prove that the complete matrix ring R_n of all $n \times n$ matrices over R is semi-simple if the ring R is semi-simple as a right R-module R_R . This proof is given in Section 3. We also investigate semi-simple right ideals of R and R_n and study their relations.

2. Preliminaries.

We call a submodule P of M large in M and write $P \subseteq M$ in case each non-zero submodule of M meets P. The aim of this section is to prove that S(M) coincides with the sum of all simple submodules of M and to seek a necessary and sufficient condition for a module to be semi-simple.

First, we introduce the definition:

DEFINITION. A submodule N of M is closed if and only if N has no proper large extensions in M.

If $M_R \supseteq P_R$, then C is called a complement submodule of P in M in case C is a submodule which is maximal in the set of all submodules Q such that $Q \cap P = 0$. By Zorn's lemma, if $P \cap A = 0$, then there exists a complement submodule of P in M containing A. By a complement submodule we mean a submodule which is a complement submodule of some submodule of M. It is easy to see that the closed submodules of a module M coincide with the complement submodules of M. By this fact, P is large in M if and only if P meets every non-zero closed submodule of M. For, if $P \cap K = 0$, then we can choose a complement (=closed) submodule C of P containing K. If P meets every non-zero closed submodule, then C = 0, since $C \cap P = 0$ and so K = 0. This shows that P is large in M. From this we prove the following lemma:

LEMMA 1. Let A and B be submodules of M. Then B is large in A if and only if there exists a large submodule P of M such that $B=A \cap P$.

Proof. Assume that $B \subseteq 'A$ and K be a complement submodule of B in M. Put P = B + K. Since $B \cap (A \cap K) = B \cap K = 0$ and $A \cap K = 0$, $A \cap P = A \cap (B + K) = B + (A \cap K) = B$. Let D be a submodule of M with $P \cap D = 0$. Then also $B \cap (K - D) = B \cap (P \cap (K - D)) = B \cap (K + 0) = B \cap K = 0$. By maximality of K, $D \subseteq K$, hence $D = (B + K) \cap D = 0$. Thus

P is large in M. If P is large in M, then $P \cap A$ is large in A for every submodule A of M. This proves that B is large in A if $B = A \cap P$ where P is large in M.

Let N be any submodule of M. We consider S(N) in N, that is, the intersection of all large submodules of N. Then the following relation holds between S(N) and S(M).

THEOREM 1. $S(N) = S(M) \cap N$.

Proof. By Lemma 1, $\{P \cap N: P \subseteq M\} = \{Q: Q \subseteq N\}$ for any submodule N of M. It follows that

$$S(M) \cap N = \bigcap \{P: P \subseteq' M\} \cap N$$

$$= \bigcap \{P \cap N: P \subseteq' M\}$$

$$= \bigcap \{Q: Q \subseteq' N\}$$

$$= S(N).$$

Let $f:M\to M'$ be an epimorphism and P' be large in M'. Then $f^{-1}P'\cap A=0$ implies $P'\cap fA=0$ so that $0=fA\subseteq P'$. Thus $A\subseteq f^{-1}fA\subseteq f^{-1}P'\cap A=0$, so $f^{-1}P'$ is large in M. Hence we obtain the following corollary:

COROLLARY 1. (1) Let f be an R-homomorphism of M into M'. Then $fS(M) \subseteq S(M')$. (2) If N is a submodule of M, then $(S(M)+N)/N\subseteq S(M/N)$.

Proof. (1): Let $y = fx, x \in S(M)$, and let Q be an arbitary large submodule of fM. Since $f^{-1}Q$ is large in $M, x \in f^{-1}Q$ so that $y = fx \in Q$. Hence $fS(M) \subseteq S(fM) \subseteq S(M')$. (2) is an immediate consequence of (1).

We call a module M is semi-simple if M is a direct sum of simple submodules. It is the same thing to require that each submodule of M is a direct summand of M [1, p. 55].

COROLLARY 2. M is semi-simple if and only if S(M)=M. Therefore S(M) is the largest semi-simple submodule of M.

Proof. Assume that M is semi-simple and let A be any non-zero simple submodule of M. Then for each large submodule P of M, $A \cap P \neq 0$ so that $A = A \cap P \subseteq P$. Thus $A \subseteq S(M)$ and M = S(M). Conversely, if A is a submodule of M and B is any complement submodule of A in M, then $A \oplus B$ is large in M and S(M) = M implies $S(M) \subseteq A \oplus B = M$ so that A is a direct summand of M. Hence M is semi-simple. By Theorem 1, $S(S(M)) = S(M) \cap S(M) = S(M)$ and S(M) is semi-simple by the above result. If a submodule P is semi-simple, then $P = S(P) = P \cap S(M) \subseteq S(M)$. Therefore S(M) is a semi-simple submodule of M which contains every semi-simple submodule.

Immediately, we have:

COROLLARY 3. The total intersection S(M) of all large submodules of M is the sum of all simple submodules of M.

It is easy to give an example for $S(M/S(M)) \neq 0$. But under some conditions we can get S(M/S(M)) = 0. If M = S(M), it is clear. Now assume that $M \neq S(M)$ and we prove S(M/S(M)) = 0 if S(M) is closed in M. Let \bar{P} be a simple submodule of M = M/S(M). Since there is a 1:1 correspondence between submodules of M and submodules of M containing S(M), either P = S(M) or there are no submodules between P and S(M)

where P is an inverse image of \bar{P} by a projection map. If S(M) is not large in P, then, since $S(P) = P \cap S(M) = S(M)$, P is the only submodule which is large in P, contradicting to S(P) = S(M). So S(M) is large in P. Thus we have the following:

COROLLARY 4. If M is a module in which S(M) is closed, then S(M/S(M)) = 0.

3. Semi-simple rings.

We now turn our attention to a ring R regarded as right R-module R_R . We call a right ideal K (hence a right R-module) of R simple in case the only right ideals of R contained in K are 0 and K itself; K is semi-simple if it is the sum of simple right ideals. In this section we characterize simple right ideals and semi-simple right ideals of a ring R with the identity 1 and of the complete matrix ring R_n of all $n \times n$ matrices over R. Using these results and applying the results obtained in Section 2, we prove that for any ring R (whether or not R contains 1) $S(R_n) = (S(R))_n$ and also prove that if a ring R is semi-simple as a right R-module R_R , then so is its complete matrix ring R_n . First we consider a ring R with the identity 1. To avoid the complexity we employ the following notations: For each right ideal K of R, and each $p=1,2,\cdots,n$, write

$$K_n^{(p)} = \{A = (a_{ij}) \in R_n : a_{ij} = 0 \text{ if } i \neq p, a_{pj} \in K, j = 1, 2, \dots, n. \}$$

and for each right ideal K of R_n , and each p, put $K_{(p)}$ as follows:

$$K_{(p)} = \{a \in R : a = a_{p1} \text{ for some } A = (a_{ij}) \text{ in } K\}.$$

First, we prove that $K_n^{(p)}$ and $K_{(p)}$ are right ideals of R_n and R respectively.

LEMMA 2. For each $p=1, 2, \dots, n$, $K_n^{(p)}$ and $K_{(p)}$ are right ideals of R_n and R respectively. Furthermore $K_n = \sum_{k=1}^n K_n^{(p)}$ and $K \subseteq \sum_{k=1}^n (K_{(p)})_n$.

Proof. We denote the matrix units of R_n by E_{ij} . Let $A=(a_{ij})$ and $B=(b_{ij})$ in $K_n^{(p)}$ and $C=(c_{ij})$ be an arbitrary element of R_n . Then $A-B=(a_{ij}-b_{ij})$ and $a_{ij}-b_{ij}=0$ if $i\neq p$ and $a_{pi}-b_{pj}\in K$ for each j, so that $K_n^{(p)}$ is closed under subtraction. For each r, $s=1,2,\cdots,n$, $A(c_{rs}E_{rs})=(\sum_{i,j}a_{ij}E_{ij})(c_{rs}E_{rs})=\sum_{i}a_{ir}c_{rs}E_{is}$ is a matrix whose i-th rows are all zero if $i\neq p$ and $a_{pr}c_{rs}$ in K. But AC is a sum of such matrices, and therefore $AC\in K_n^{(p)}$. This proves $K_n^{(p)}$ is a right ideal in R_n . Furthermore, it is easy to check $K_n=\sum_{p=1}^n K_n^{(p)}$. Next we will show that $K_{(p)}$ is a right ideal in R $(p=1,2,\cdots,n)$ and $K\subseteq \sum_{p=1}^n (K_{(p)})_n$. Since K is closed under addition (and subtraction), the same is true for $K_{(p)}$. Let a in $K_{(p)}$ and $r\in R$. Then by definition of $K_{(p)}$, there exists a matrix $A=\sum_{p=1}a_{ij}E_{ij}$ in K with $a_{p1}=a$. Since a matrix $A(rE_{11})=\sum_{i}a_{i1}rE_{i1}$ is in K and its (p,1)-position element is $a_{p1}r=ar$, $ar\in K_{(p)}$. Thus $K_{(p)}$ is a right ideal in R. Let $A=\sum_{a_{ij}}a_{ij}E_{ij}$ be any element of K. Then for any $q=1,2,\cdots,n$, $B=AE_{q1}=(\sum_{i,j}a_{ij}E_{ij})E_{q1}=\sum_{i}a_{iq}E_{i1}$ is a matrix in K whose (p,1)-position element is a_{pq} . This is true for each $p=1,2,\cdots,n$, and therefore $a_{pq}\in K_{(p)}$ for each q. Since $a_{pq}E_{pq}\in (K_{(p)})_n$ and $A=\sum_{p=1}a_{pq}E_{pq}\in \sum_{p=1}^n (K_{(p)})_n$, it

follows that K is contained in $\sum_{k=1}^{n} (K_{(p)})_{n}$. This completes the proof of lemma.

THEOREM 2. If K is a simple right ideal of R, then K(p) is a simple right ideal of R_n for each $p=1, 2, \dots, n$, and therefore K_n is semi-simple in R_n .

Proof. Let N be a right ideal of R_n such that $N \subseteq K_n^{(p)}$. Then $N_{(p)}$ is a right ideal of R satisfying $(N_{(p)})_n^{(p)} = N$. For, if $A = (a_{ij}) \in N$, then $AE_{j1} = \sum_i a_{ij} E_{i1} = a_{pj} E_{p1} \in N$ and $a_{pj} \in N_{(p)}$ for each j. It follows that $A \in (N_{(p)})_n^{(p)}$ and hence $N \subseteq (N_{(p)})_n^{(p)}$. Suppose now that $A \in (N_{(p)})_n^{(p)}$ and let us show that $A \in N$. Let $a = a_{pj}$ be an element in the (p, j)-position of A. Then there exists a matrix $B = (b_{ij}) \in N$ with $b_{p1} = a$. Since $BE_{1j} = \sum_i b_{i1}E_{ij} = b_{p1}E_{pj} = aE_{pj} \in N$, $A = \sum_{j=1}^n a_{pj}E_{pj} \in N$ and so $(N_{(p)})_n^{(p)} = N$. Since $N \subseteq K_n^{(p)}$, $N_{(p)} \subseteq K$, and since K is simple, either $N_{(p)} = 0$ or $N_{(p)} = K$. i. e., N = 0 or $N = K_n^{(p)}$. This proves that $K_n^{(p)}$ is simple and since $K_n = \sum_{p=1}^n \bigoplus_{j=1}^n K_n^{(p)}$ is a direct sum of simple right ideals, K_n is semi-simple.

Now the following lemma can be proved straightforwardly, so the proof will be omitted.

LEMMA 3. If $K = \sum_{i \in I} K_i$ is a sum of right ideals of R, then $K_n^{(p)} = (\sum_{i \in I} K_i)_n^{(p)} = \sum_{i \in I} (K_i)_n^{(p)}$.

COROLLARY 5. If K is semi-simple in R, then so is $K_n^{(p)}$ for each $p=1,2,\cdots,n$.

Proof. Write $K = \sum_{i=1}^{n} K_i$ where K_i is simple in R. Then by Theorem 2, for each $i \in I$, $(K_i)_n^{(p)}$ is a simple right ideal of R_n . Since $K_n^{(p)} = \sum_{i=1}^{n} (K_i)_n^{(p)}$ is a sum of simple right ideals, $K_n^{(p)}$ is semi-simple for each $p=1, 2, \dots, n$.

Since, for each right ideal K of R, we have $K_n = \sum_{p=1}^n K_n^{(p)}$, we obtain the following corollary:

COROLLARY 6. If K is semi-simple in R, then so is K_n in R_{n*}

THEOREM 3. If R is a ring with the identity 1, then $(S(R))_n$ is semi-simple in R_n .

Proof. Write $S(R) = \sum_{i \in I} K_i$ where K_i are simple right ideals of R. Then $(S(R))_n^{(p)} = \sum_{i \in I} (K_i)_n^{(p)}$ and each $(K_i)_n^{(p)}$ is simple by Theorem 2, so that $(S(R))_n^{(p)}$ is semi-simple. But $(S(R))_n = \sum_{i \in I} (S(R))_n^{(p)}$ is a sum of semi-simple right ideals in R_n , and therefore $(S(R))_n$ is semi-simple.

We know that S(M) is the largest semi-simple submodule of M by Corollary 2. Therefore $(S(R))_n$ is contained in $S(R_n)$ by the above result. To prove the converse inclusion, we need the following lemma:

LEMMA 4. If K is a simple (resp. large) right ideal of R_n , then there exists a semi-simple (resp. large) right ideal K of R such that $K \subseteq K_n$.

Proof. Consider a right ideal $K_{(p)} = \{a \in R : a = a_{p1} \text{ for some } A = (a_{ij}) \in K\}$ and let $K = a_{p1}$

Then by Lemma 2, K is a right ideal of R such that $K \subseteq K_n$. First assume that K is simple and we show that $K_{(p)}$ is simple in R. For this purpose, let $N_{(p)}$ be a right ideal of R such that $N_{(p)} \subseteq K_{(p)}$ and let $N = (N_{(p)})_n^{(p)} + \sum_{i=p}^n R_n^{(i)}$, that is, any matrix $A = (a_{ij})$ in N is of the form: for each $j = 1, 2, \dots, n, a_{pj} \in N_{(p)}$ and if $i \neq p$, then a_{ij} is an arbitary element of R. We note that $N \cap K = \{A \in K : A = (a_{ij}), a_{pj} \in N_{(p)} \text{ for each } j\}$. Since K is simple, it follows that $N \cap K$ is K or 0 and so $N_{(p)} = K_{(p)}$ or $N_{(p)} = 0$, that is, $K_{(p)}$ is simple for each $p = 1, 2, \dots, n$. Thus K is a semi-simple right ideal of R such that $K \subseteq K_n$. If K is large in R_n , then K is also large in R since $K \subseteq K_n$. For, if P is a right ideal of R such that $K \cap P = 0$, then $(K \cap P)_n = K_n \cap P_n = 0$ so that $P_n = 0$ and P = 0. This completes the proof of lemma.

The following result is an immediate consequence of Lemma 4 and Theorem 3.

COROLLARY 7. If R is a ring with the identity 1, then $S(R_n) = (S(R))_n$.

Now we prove the following theorem which is a generalization of the above result.

TEHOREM 4. For any ring R, $S(R_n) = (S(R))_n$.

Proof. If $1 \in R$, then it is through. If $1 \notin R$, then we imbed R into the ring R' with the identity 1 as an ideal and by the case already proved we have $S(R'_n) = (S(R'))_n$. Theorem 1 then shows that $S(R) = S(R') \cap R$. Since R_n is an ideal in R'_n , we can again apply Theorem 1 and obtain

$$S(R_n) = R_n \cap S(R'_n) = R_n \cap (S(R'))_n = (R \cap S(R'))_n = (S(R))_n$$

This completes the proof of the theorem.

By the above theorem, we can prove the following theorem which is the main result of this section.

THEOREM 5. If a ring R is semi-simple as a right R-module R_R , then so is R_{n-1}

Proof. Theorem 4 ensures that $S(R_n) = (S(R))_n = R_n$ if R is semi-simple. Therefore R_n is also semi-simple by Corollary 2.

References

- [1] C. Faith, Lectures on injective modules and quotient rings, Lecture Notes in Higher Mathematics, 49, Springer, 1967.
- [2] Neal H. McCoy, The theory of rings, Macmillan, 1964.

Korean Military Academy