
J. Korean :\lath. Soc.
Vol. 10, :\0.1. 1973

ON SEMI-SIMPLE RI~GS AND THEIR COMPLETE
MATRIX RINGS

By HA! joo", KI\!

1. Introduction.

Let R be a ring and .11 be a right R-module. In this paper ,ye consider the class of
all large submodules of ,\1 and denote their total intersection by S (A:!). In section 2,
we prove S (.\!) coincides with the sum of all simple submodules of M, the largest
semi.simple submodule in "\f. Applying this result to an arbitrary ring R whether or
not R contains the identity 1. we prove that the complete matrix ring Rn of all n x n
matrices over R is semi-simple if the ring R is semi-simple as a right R.module RR' This
proof is given in Section 3. We also investigate semi-simple right ideals of R and Rn
and study their relations.

2. Preliminaries.

\"e call a submodule P of Af large in .If and write Pr;;;,'1U in case each non·zero sub­
module of "\1 meets P. The aim of this section is to prove that S (M) coincides "'ith
the sum of all simple submodules of .If and to seek a necessary and sufficient condition
for a module to be semi-simple.

First, we introduce the definition:

DEFI~IT!O:\'. A submodule N of JI is closed if and only if X has no proper large
extensions in .11.

If J!,,~PR. then C is called a complement submodule of P in .11 in case C is a sub­
module which is maximal in the set of all submodules Q such that QnP=O. By Zom's
lemma, if P nA=O, then there exists a complement submodule of P in M containing
A. By a complement submodule ,ye me"n a submodule which is a complement submodule
of some submodule of .11. It is easy to see that the closed submcdules of a module .If
coincide with the complement submodules of .11. By this fact, P is large in .11 if and
only if P meets every non-zero closed submodule of .11. For, if P -: K=O. then "'e can
choose a complement C= closed) submodule C of P containing K. If P meets every
non-zero closed submodule, then C=O. since C i p=o and so K=O. This shows that
P is large in .If. From this we prove the following lemma:

LnL\L\ 1. Let.1 and B be submodules of .11. Then B is large in A if and only if
there exists a large submodule P of .\1 such that B=A nP.

Proof. Assume that Br;;;,'A and K be a complement submodule of B in M. Put P=

B-;-K. Since Bn (AnK)=BnK=O and A.nK=O,"-lnp=An (B-'-K)=B..L(.4.nK)=R.
Let D be a submodule of J:! with pr, D=O. Then also B n(K - D) =B nCP;j (K - D))
=BllCK-O)=BiIK=O. By maximality of K,Dr;;;,K, hence D=(B+K)nD=O. Thus
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P is large in M. If P is large in M, then P nA is large in A for every submodule
A of M. This proves that B is large in A if B=A nP where P is large in M.

Let N be any submodule of M. We consider S(N) in N, that is, the intersection of
all large submodules of N. Then the following relation holds between S (N) and S(M).

THEOREM 1. S (N) =S(M) nN.

Proof. By Lemma 1, {P nN:Pc;;;.'M} = {Q: Qc;;;.'N} for any submodule N of M. It
follows that

S (.'\,{) nN= n{P: pc;;;.'M} nN

=n {pnN: Pc;;;.'M}

= n{Q: Qc'AT}

=S(N).

Let f:M-+M' be an epimorphism and P' be large in M'. Then f-Ip' nA=O implies
p'nfA=O so that O=fAr;;;;.P'. Thus Ac;-f-IfAc;;;.f-IP'nA=O, so f-Ip' is large in M.
Hence we obtain the following corollary:

COROLLARY 1. Cl) Let f be an R-homomorphism of M into M'. Then fS(M) r;;S(M').
(2) If N is a submodule of M, then (S CM) +N) / Nc;;;.S CM/ N).

Proof. (1): Let y= fx, .7:ES(M) , and let Q be an arbitary large submodule of fM.
Since f-IQ is large in M,XEf-IQ so that y=fxEQ. Hence fS(M)c;;;.S(jM)c;;;.S(M').
(2) is an immediate consequence of (1).

We call a module AI is semi-simple if M is a direct sum of simple submodules. It is the
same thing to require that each submodule of M is a direct summand of M [1, p.55J.

COROLLARY 2. M is semi-simple if and only if S(M)=M. Therefore S(M) is the
largest semi-simple submodule of M.

Proof. Assume that M is semi-simple and let A be any non-zero simple submodule of
M. Then for each large submodule P of M,Anp*O so that A=Anpc;;;.p. Thus Ac;;;.
S(M) and M=S(M). Conversely, if A is a submodule of M and B is any complement
submodule of A in M, then AEBB is large in M and SCM)=M implies S(M)c;;;.NBB
=M so that A is a direct summand of M. Hence M is semi-simple. By Theorem 1,
S (S CM» =S(M) nS (M) =SCM) and S CM) is semi-simple by the above result. If a
submodule Pis semi-3imple, then p=sCp)=pnS(M)r;;;;.SCM). Therefore S(M) IS a
semi-simple submodule of M which contains every semi-simple submodule.

Immediately, we have:

COROLLARY 3. The total intersection S CM) of all large submodules of M is the sum
of all simple submodules of M.

It is easy to give an example for S CM/S CM» *0. But under some conditions we can
get S(M/S(M» =0. If M=SCM) , it is clear. Now assume that M*S(M) and we
prove S CM/S (M) =0 if S (M) is closed in M. Let P be a simple submodule of M=
M/S (M). Since there is a 1: 1 correspondence between submodules ofM and submodules
of M containing S(M), either P=S(M) or there are no submodules between P and S(M)
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where P is an inverse image of P by a projection map. If S(M) is not large in P,
then, since S(p)=pnS(M)=S(M), P is the only submodule which is large in P,
contradicting to S (P) =S(M). So S (M) is large in P. Thus we have the following:

COROLLARY 4. If M is a'module in which S (M) is closed, then S (M/S (M» =0.

3. Semi-simple rings.

We now turn our attention to a ring R regarded as right R-module RR' We call a
right ideal K (hence a right R-module) of R simple in case the only right ideals of R
contained in K arc 0 and K itself; K is semi-simple if it is the sum of simple right
ideals. In this section we characterize simple right ideals and semi-simple right ideals
of a ring R with the identity 1 and of the complete matrix ring Rn of all n x n matrices
over R. Lsing these results and applying the results obtained in Section 2, we prove
that for any ring R (whether or not R contains 1) S(Rn) = (S(R»n and also prove that
if a ring R is semi-simple as a right R-module RR' then so is its complete matrix
ring Rn. First we consider a ring R with the identity 1. To avoid the complexity we
employ the following notations: For each right ideal K of R, and each p=1,2, "', n,
write

K~P)= {A= (aU) ERn: aij=O if i=/= p, apjEK, j=1,2, "', n. }

and for each right ideal K of Rn> and each p, put K cp) as follows:

K cp)= {aER:a=apI for some A= (ai) in K}.

First, we prove that KnCp) and K cp) are right ideals of Rn and R respectively.

LEMMA 2. For each p=1,2, .. , , n, KnCp) and K cp) are right ideals of Rn and R respec-. .
tively. Furthermore Kn=2:.,KnCp) and Kr;;;,'L (Kcp»n'

P=l p=l

Proof. We denote the matrix units of Rn by Eij. Let A = (ai) and B= (bi) in K nCp)
and C= (Cij) be an arbitrary element of Rn. Then A - B= (aij-bij ) and aij-bij=O if i=/=p
and apj-bpjEK for each j, so that KnCP) is closed under subtraction. For each r,s=
1,2, "', n, A (cTsETS ) = (4: aijEij) (crsErs)= 'L.,aiTcTsEis is a matrix whose i-th rows are all

'.1 I

zero if i=/=p and apTcTS in K. But AC is a sum of such matrices, and therefore ACE
Kn Cp) . This proves KnCp) is a right ideal in Rn' Furthermore, it is easy to check K n

= L.KnCp). Next we will show that Kcp) is a right ideal in R (p=1, 2, "', n. ) and K r;;;,
P=l

L.(KCp»n' Since K is closed under addition (and subtraction), the same is true for K cp).
P~l

Let a in K cp) and rER. Then by definition of K(p), there exists a matrix A='LaijEij
in K with apI=a. Since a matrix A (rEll ) = UilrEil is in K and its (p, 1) -position

;

element is aplr=ar, arEKcp). Thus K cp) is a right ideal in R. Let A=uijEij be any

element of K. Then for any q=1, 2, "', n, B=AEqI= (~ijEij)EqI = uiqEil is a matrix
to.J ,

in K whose (p, V-position element is apq. This is true for each P=l, 2, "', n, and

therefore apqEKcp) for each q. Since apqEpqE (K(p»n and A=UpqEpqE't(KCP»m it
P,II 1-1
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follows that K is contained in 'E,(KCp)n. This completes the proof of lemma.
'-I

THEOREM 2. If K is a simple right ideal of R, then K(p) is a simple right ideal of
Rn for each P=1,2, •••, n, and therefore K n is semi-simple in Rn.

Proof. Let N be a right ideal of Rn such that N~KnCP). Then N cp) is a right ideal
of R satisfying (NCP)nCp)=N. For, if A= (ai) €N, then AEjl= 'E,aijEi1=apjEpl€N,
and apj€Ncp) for each j. It follows that AE(NCp»nCP) and hence N~(NCP)nCP).

Suppose now that A€ (Ncp»n'p) and let us show that A€N. Let a=apj be an element
in the (p, j) -position of A. Then there exists a matrix B= (bi) €N with bpl =a. Since

BElj= "J:.bilEij=bplEpj=aEpjEN, A=UpjEpjEN and so (NCp»nCp)=N. Since N~KncPJ,
i J-l

Ncp)~K, and since K is simple, either Ncp)=O or Ncp)=K. i.e., N=O or N=KnCp).

This proves that Kn Cp) is simple and since Kn = tfBKn Cp) is a direct sum of simple right
'-I

ideals, K n is semi-simple.
N~w the following lemma can be proved straightforwardly, so the proof will be

omitted.

LE:\IMA 3. If K=L,Ki is a sum of right ideals of R, then KnCp)=('E,K;)n Cp)=
;e} rEI

2:; (Ki ) n Cp).
iel

COROLLARY 5. If K is semi-simple in R, then so is K nCp) for each p=1,2, ..., n.

Proof. Write K=L,Ki where K i is simple in R. Then by Theorem 2, for each iEI,
isI

(K;) nCp) is a simple right ideal of Rn. Since K nCp) = 'E, (Ki) "Cp) is a sum of simple right
;fF<1

ideals, K n Cp) is semi-simple for each P=l, 2, ..., n.

Since, for each right ideal K of R, we have Kn = 2:;Kn cpJ, we obtain the following
p= 1

corollary:

COROLLARY 6. If K is semi-simple in R, then so i~ K n in Rn.

THEOREM 3. If R is a ring with the identity 1, then (S (R» n is semi-simple in Rn.

Proof. Write S(R)='E,Ki where K i are simple right ideals of R. Then (S(R»n Cp)
is]

=2:; (K j )nCp) and each (Ki)n CP) is simple by Theorem 2, so that (S(R»n Cp) is semi-
i,G.]

simple. But (SCR»n='2:,CS(R»n Cp) is a sum of semi-simple right ideals in Rn> and
iEI

therefore (S(R» n is semi-simple.

We know that S(M) is the largest semi-simple submodule of M by Corollary 2­
Therefore (S(R»n is contained in S(Rn) by the above result. To prove the converse
inclusion, we need the following lemma:

LEMMA 4. If K is a simple (resp. large) right ideal of Rn> then there exists a semi­
simple (resp. large) right ideal K of R such that K~K".

Proof. Consider a right ideal K cp)= {a€R: a=apl for some A= (aij) EK} and let K=
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tKcp). Then by Lemma 2, K is a right ideal of R such that Kc;;;.Kn. First assume
'~l

that K is simple and we show that K cp) is simple in R. For this purpose, let N cp) be
a right ideal of R such that N(p)~Kcp) and let N=(N(p)/p)+'L,RnGJ, that is, any

''''.
matrix A= (au) in N is of the form: for each j=l, 2, '.', n, apjEN(p) and if i=f=p, then
aij is an arbitary element of R. We note that Nn K= {AEK: A= (au) , apjEN(p) for
each j}. Since K is simple, it follows that NnK is K or °and so N(p) = K cp) or N(p)
=0, that is, K(p) is simple for each P=l, 2, "', n. Thus K is a semi-simple right ideal
of R such that K~Kn' If K is large in Rn> then K is also large in R since K~Kn'

For, if P is a right ideal of R such that Knp=O, then (Knp)n=Knnpn=O so that
Pn=O and P=O. This completes the proof of lemma.

The following result is an immediate consequence of Lemma 4 and Theorem 3.

COROLLARY 7. If R is a ring with the identity 1, then 8 (Rn) = (8 (R» n'

Now we prove the following theorem which is a generalization of the above result.

TEHORDl 4. For any ring R, 8 (Rn) = (8 (R) ) n'

Proof. If lE R, then it is through. If 1$R, then we imbed R into the ring R'
with the identity 1 as an ideal and by the case already proved we have 8 (R'n) =

(8 (R') ) n' Theorem 1 then shows that 8 (R) =8(R') nR. Since Rn is an ideal in R'n> we
can again apply Theorem 1 and obtain

This completes the proof of the theorem.
By the above theorem, we can prove the following theorem which is the main result

of this section.

THEOREM 5. If a ring R is semi-simple as a right R-module RR' then so is Rn.

Proof. Theorem 4 ensures that 8 (Rn) = (8(R»n=Rn if R is semi-simple. Therefore
Rn is also semi-simple by Corollary 2.
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