TOPOLOGICAL SPACES WITH SEMIDEVELOPMENTS

By Moo Ha Woo

The principal results of the paper are as follows. Every cushioned pair-semidevelopable space is regular. A locally semidevelopable space is semidevelopable if and only if it is subparacompact. A locally cushioned pair-semidevelopable space is cushioned pair-semidevelopable if it is subparacompact and collectionwise normal.

A topological space X is said to be *semidevelopable* [1] if there is a sequence of (not necessarily open) covers of X, $\gamma = \{\gamma_n\}_{n=1}^{\infty}$ such that for each $x \in X$, $\{\operatorname{St}(x, \gamma_n)\}_{n=1}^{\infty}$ is a neighborhood base at x. In this case, γ is called a *semidevelopment* for X.

If γ and δ are collections of subsets of X, then we say that γ is cushioned in δ if one can assign to each $G \in \gamma$ a $D(G) \in \delta$ such that, for every $\gamma' \subset \gamma$,

$$C[(\bigcup \{G | G \in \gamma') \subset \bigcup \{D(G) | G \in \gamma'\}]$$
.

By a cushioned pair-semidevelopment [2] for X we shall mean a pair of semidevelopments (γ, δ) such that γ_n is cushioned in \hat{o}_n for each n. A topological space X is said to be cushioned pair-semidevelopment for X. Unless otherwise stated no separation axioms are assumed.

THEOREM 1. Every cushioned pair-semidevelopable space is regular.

Proof. Let (γ, δ) be a cushioned pair-semidevelopment of X. For each $x \equiv X$, let U be an open set containing the point x. Since δ is a semi-development, there is an integer m such that $x \in St(x, \delta_m) \subset U$. For such m, we put $\gamma_m' = \{G \mid x \in G \in \gamma_m\}$. Since γ_m is cushioned in δ_m ,

$$x \in \text{Int St}(x, \gamma_m) \subset \text{Cl St}(x, \gamma_m) = \text{Cl}(\bigcup \{G | G \in \gamma_m'\})$$

$$\subset \bigcup \{D(G) | G \in \gamma_m'\} \subset \text{St}(x, \delta_m) \subset U.$$

A space is subparacompact [5] if every open cover has a σ -discrete closed refinement. A space is collectionwise normal [3] if for every discrete collection of subsets $\{H_{\alpha} | \alpha \in A\}$ there is a discrete collection of open subsets $\{G_{\alpha} | \alpha \in A\}$ such that $H_{\alpha} \subset G_{\alpha}$ for every $\alpha \in A$.

Smirnov [7] has shown that a locally metric space is metrizable if it is paracompact. Ceder [6] has obtained that a locally stratifiable T_1 -space is a stratifiable T_1 -space if it is paracompact. We can obtain the following

THEOREM 2. A locally cushioned pair-semidevelopable space X is cushioned pair-semi-developable if it is subparacompact and collectionwise normal.

Proof. For each $x \in X$, there is an open neighborhood U_x of x with a cushioned pair-semidevelopment. Since X is subparacompact, there is a σ -discrete closed refinement $\mathcal{L} = \bigcup_{n=1}^{\infty} \mathcal{L}_n$ of $\{U_x | x \in X\}$. Now let n be a fixed positive integer. For each $B \in \mathcal{L}_n$, let x(B) be a fixed element of X such that $B \subset U_{x(B)}$. Since X is collectionwise normal,

the discrete collection \mathcal{L}_n has a discrete collection $\{G(B) | B \subset G(B), B \in \mathcal{L}_n\}$ of open subsets, and there exist open sets $V'_{x(B)}$ and $V_{x(B)}$ in X such that $B \subset V'_{x(B)} \subset \operatorname{Cl} V'_{x(B)} \subset V_{x(B)} \subset \operatorname{Cl} V_{x(B)} \subset \operatorname{Cl} V_{x(B)} \subset \operatorname{Cl} V_{x(B)}$. Since every cushioned pair-semidevelopable space is hereditarily cushioned pair-semidevelopable, $\operatorname{Cl} V_{x(B)}$ has a cushioned pair-semidevelopment $(\gamma(x(B)), \delta(x(B)))$. For each $n, m \in N$, we put

$$\gamma_{m,m} = \{G | G \in \gamma_m(x(B)), B \in \mathcal{L}_n\} \cup \{O_n\}$$

and

$$\delta_{n,m} = \{G \mid G \in \delta_m(x(B)), B \in \mathcal{L}_n\} \cup \{C \mid Q_n\}$$

where $Q_n = X - \bigcup \{\text{Cl} V'_{x(B)} | B \in \mathcal{L}_n\}$. Then $\gamma = \{\gamma_{n,m} | n, m \in N\}$ and $\delta = \{\delta_{n,m} | n, m \in N\}$ are sequences of covers of X and we show that (γ, δ) is a cushioned pairsemidevelopment.

For each $z \in X$, there is an integer $n \in N$ such that $z \in B \in \mathcal{L}_n$. If U is any open set containing z, there exists some $m \in N$ such that $z \in \operatorname{Int}_{(\operatorname{Cl}V_{x(B)})}\operatorname{St}(z,\gamma_m(x(B))) \subset \operatorname{St}(z,\gamma_m(x(B))) \subset (U \cap \operatorname{Cl}V_{x(B)})$. By the above construction, z is not contained in any element of $\gamma_m(x(B^*))$ for $B^*(\neq B) \in \mathcal{L}_n$. Thus we have $\operatorname{St}(z,\gamma_{n-m}) = \operatorname{St}(z,\gamma_m(x(B)))$. Since $\operatorname{Int}_{(\operatorname{Cl}V_{x(B)})}\operatorname{St}(z,\gamma_m(x(B)))$ is open in $\operatorname{Cl}V_{x(B)}$, there is an open set G in X such that $G \cap \operatorname{Cl}V_{x(B)} = \operatorname{Int}_{(\operatorname{Cl}V_{x(B)})}\operatorname{St}(z,\gamma_m(x(B)))$. On the other hand $G \cap V'_{x(B)}$ is open in X, therefore we have $\operatorname{Int} \operatorname{St}(z,\gamma_m(x(B))) \supset G \cap V'_{x(B)} \ni z$. Hence we obtain (n,m) such that $z \in \operatorname{Int} \operatorname{St}(z,\gamma_{n-m}) \subset \operatorname{St}(z,\gamma_{n-m}) \subset U$.

Next we have $z \in \text{Int } \operatorname{St}(z, \gamma_{k,l})$ for each $k, l \in \mathbb{N}$. Because if $z \in V_{x(B)}$ for some $B \in \mathcal{L}_k$, then $z \in \operatorname{Int}_{(\operatorname{Cl}V_{x(B)})}\operatorname{St}(z, \gamma_l(x(B)))$. Thus we have $z \in \operatorname{Int } \operatorname{St}(z, \gamma_{k,l})$ by the above way. If $z \in V_{x(B)}$ for all $B \in \mathcal{L}_k$, then $z \in Q_k$. Since Q_k is open, therefore we have $z \in \operatorname{Int } \operatorname{St}(z, \gamma_{k,l})$.

Thus we have the following proposition: (1) γ is a semidevelopment.

By the similar way, we can prove the following proposition: (2) δ is a semidevelopment.

Next, let $\gamma'_{n,m}$ be an arbitrary subfamily of $\gamma_{n,m}$. If $Q_n \in \gamma'_{n,m}$, then we put $\gamma_m(x(B))^* = \gamma_m(x(B)) \cap \gamma'_{n,m}$. Since $\{ClV_{x(B)} | B \in \mathcal{L}_n\}$ is discrete and $\bigcup \{G | G \in \gamma_m(x(B))^*\}$ $\subset ClV_{x(B)}$, we have

$$\begin{aligned} \operatorname{Cl}(\bigcup \gamma'_{n,m}) &= \operatorname{Cl}(\bigcup \left\{ G \middle| G \in \gamma_m(x(B))^*, \ B \in \mathcal{L}_n \right\}) \\ &= \operatorname{Cl}(\bigcup_{B \in \mathcal{L}_n} (\bigcup \left\{ G \middle| G \in \gamma_m(x(B))^* \right\})) \\ &= \bigcup_{B \in \mathcal{L}_n} (\operatorname{Cl}(\bigcup \left\{ G \middle| G \in \gamma_m(x(B))^* \right\})) \\ &= \bigcup_{B \in \mathcal{L}_n} (\operatorname{Cl}V_{x(B)}) (\bigcup \left\{ G \middle| G \in \gamma_m(x(B))^* \right\})) \\ &= \bigcup_{B \in \mathcal{L}_n} (\bigcup \left\{ D(G) \middle| G \in \gamma_m(x(B))^* \right\}) \\ &= \bigcup \left\{ D(G) \middle| G \in \gamma'_{n,m} \right\}. \end{aligned}$$

If $Q_n \in \gamma'_{n,m}$,

$$Cl(\bigcap r'_{n,m}) = Cl(\bigcup \{G | G \in \gamma'_{n,m}, G \neq Q_n\}) \bigcup Cl \ Q_n$$

$$\subset \bigcup \{D(G) | G \in \gamma'_{n,m}, G \neq Q_n\} \bigcup Cl \ Q_n$$

$$= \bigcup \{D(G) | G \in \gamma'_{n,m}\}.$$

Therefore, (3) $\gamma_{n \cdot m}$ is cushioned in $\delta_{n \cdot m}$. By (1), (2) and (3), the theorem is proved completely.

Burke [5] has shown that a locally developable space is developable if it is subparacompact. we can obtain analogous result as follows:

THEOREM 3. A locally semidevelopable space is semidevelopable if and only if it is subparacompact.

Proof. The necessity is proved by the present author [8] and the sufficiency can be proved by the similar way to theorem 4 and Burke's method.

Alexander has proved that a space is semi-metrizable if and only if it is a semi-developable T_0 -space. It is well known that a locally T_0 -space is T_0 -space. Then by the Alexander's result and Theorem 3, we have the following

COROLLARY 4. A locally semi-metric space is semi-metrizable if and only if it is subparacompact.

References

- [1] C.C. Alexander, Semi-developable spaces and quotient images of metric spaces, Pac. J. Math. Vol. 37, No. 2 (1971), 227-293.
- [2] _____, An extension of Morita's metrization theorem, Proc. Amer. Math. Soc. Vol. 30, No. 3 (1971), 578-581.
- [3] R. H. Bing, Metrization of topological spaces, Can. J. Math. 3 (1951), 175-186.
- [4] C. J. R. Borges, On stratifiable spaces, Pac. J. Math. Vol. 17, No. 1, (1966), 1-16.
- [5] D. K. Burke, On subparacompact spaces, Proc. Amer. Math. Soc. Vol 23, No. 3 (1969), 655-663.
- [6] J. G. Ceder, Some generalization of spaces, Pac. J. Math. (1961), 105-126.
- [7] Yu. Mo. Smirnov, On metrization of topological spaces. Uspehi. Mat. Nauk, (1951), 100-111.
- [8] M. H. Woo, Semi-developable spaces and semistratifiable spaces, Kyungpook Math. J. Vol. 11, No. 2 (1971), 155-158.

Soong Jun University at Taejon