THE STRUCTURE OF $\mathcal{L}(M, L)$

By Jongsik Kim

1. Introduction

The global theory of the space $\mathcal{L}(E,F)$ of all order bounded linear mappings from a linear lattice E into a linear lattice F is actively investigated. In particular, when F is an (L)-space, many theorems in the case F is the space of real numbers can be extended. In this connection we shall give a structure theorem of $\mathcal{L}(M,L)$ (cf. Def. 1). We shall also give some remarks on the structure of $\mathcal{L}(L,M)$ as a dual case.

For definitions we refer to Kelley and Namioka [2] and for elementary calculations we refer to Vulikh [1].

2. Definitions and notations.

Throughout this paper M is an abstract (M)-space with an order unit e and L is an abstract (L)-space. We say that a subset A of M (or L) is order bounded if A is contained in an interval

$$[x, y] = \{z \in M \text{ (or } L) \mid x \leq z \leq y\}.$$

DEFINITION 1. $\mathcal{L}(M, L)$ (resp. $\mathcal{L}(L, M)$) is the space of all the linear mappings from M(resp. L) into L(resp. M) which map every order bounded set in M (resp. L) to an order bounded set in L (resp. M).

3. Theorem

THEOREM 1. $\mathcal{L}(M, L)$ is an abstract (L)-space under the norm $\|\phi\| = \|\sup_{\|x\| \le 1} |\phi(x)| \|$ for any $\phi = \mathcal{L}(M, L)$.

Proof. We notice that $\|\varphi\| = \|\sup_{\|x\| \le \epsilon} |\varphi(x)| \|$, which clearly exists. $\|\varphi\|$ is a norm for $\mathcal{L}(M, L)$. In fact, if $\|\varphi\| = 0$, then $\sup_{\|x\| \le 1} |\varphi(x)| = 0$ and hence $\varphi = 0$.

$$\begin{aligned} \|\alpha\varphi\| &= \|\sup_{\|x\| \le 1} |\alpha\varphi(x)| \| \\ &= \||\alpha| \sup_{\|x\| \le 1} |\varphi(x)| \| \\ &= |\alpha| \|\sup_{\|x\| \le 1} |\varphi(x)| \| \\ &= |\alpha| \|\varphi\| \end{aligned}$$

for any scalar α and any $\varphi \in \mathcal{L}(M, L)$.

$$\begin{split} \|\varphi + \phi\| &= \|\sup_{\|x\| \le 1} |(\varphi + \psi)(x)| \| \\ &= \|\sup_{\|x\| \le 1} |\varphi(x) + \psi(x)| \| \\ &\le \|\sup_{\|x\| \le 1} |\varphi(x)| + \sup_{\|x\| \le 1} |\psi(x)| \| \\ &= \|\sup_{\|x\| \le 1} |\varphi(x)| \| + \|\sup_{\|x\| \le 1} |\psi(x)| \| \end{split}$$

Received by the editors March 16, 1973.

$$= ||\varphi|| + ||\psi||$$

for any $\phi, \psi \in \mathcal{L}(M, L)$.

The norm $\|\varphi\|$ is compatible with the order, that is, if $|\varphi| \leq |\psi|$, then $\|\varphi\| \leq \|\phi\|$. Clearly our norm is monotonic on the positive cone of $\mathcal{L}(M,L)$, that is, if $0 \leq \varphi \leq \psi$, then $\|\varphi\| \leq \|\phi\|$. Therefore it is enough to show that $\|\varphi\| = \||\varphi|\|$ for any $\varphi \in \mathcal{L}(M,L)$. But

$$\begin{aligned} |||\varphi||| &= ||\sup_{\|x\| \le 1} ||\varphi|(x)||| \\ &= ||\sup_{\|x\| \le 1, x \ge 0} ||\varphi|(x)||| \\ &= ||\sup_{\|x\| \le 1, x \ge 0} |\varphi|(x)|| \\ &= ||\sup_{\|x\| \le 1, x \ge 0} \sup_{\|y\| \le 1} |\varphi(y)||| \\ &= ||\sup_{\|x\| \le 1, x \ge 0} |\varphi(x)||| \\ &= ||\varphi||. \end{aligned}$$

Now let us prove that our norm is additive on the positive cone of $\mathcal{L}(M,L)$. We notice that if $\varphi \in \mathcal{L}(M,L)$ and $\varphi \geq 0$, then $\|\varphi\| = \|\varphi(e)\|$. Therefore, if $\varphi, \psi \in \mathcal{L}(M,L)$ and $\varphi \geq 0$, $\psi \geq 0$, then

$$\|\varphi + \psi\| = \|(\varphi + \psi)(e)\|$$

$$= \|\varphi(e) + \psi(e)\|$$

$$= \|\varphi(e)\| + \|\psi(e)\|.$$

Hence $\|\varphi + \phi\| = \|\varphi\| + \|\phi\|$.

To finish our proof, it remains to show that $\mathcal{L}(M, L)$ is a Banach space. To prove this, it is sufficient to prove that

- 1) if a sequence $\{\varphi_{\alpha}\}$ $(\varphi_{\alpha} \ge 0)$ is decreasing and converges to zero in order, then $\{\varphi_{\alpha}\}$ converges to 0 in norm, and that
- 2) if a sequence $\{\varphi_{\alpha}\}$ $(\varphi_{\alpha} \geq 0)$ is increasing without order bound, then sequence of norms $\{\|\varphi_{\alpha}\|\}$ increases without bound. (cf. Vulikh [1])

But $\|\varphi_{\alpha}\| = \|\varphi_{\alpha}(e)\|$ and $(\inf_{\alpha}\varphi_{\alpha})(e) = \inf_{\alpha}(\varphi_{\alpha}(e)) = 0$. Hence 1) holds. If $\{\varphi_{\alpha}\}$ is increasing without bound, then so is $\varphi_{\alpha}(e)$ and hence $\|\varphi_{\alpha}(e)\|$ is increasing without bound.

This completes our proof.

We shall state some remarks on $\mathcal{L}(L, M)$.

REMARK 1. If L has an order unit u and M is Dedekind complete, then $\mathcal{L}(L, M)$ is a normed lattice.

Proof. We shall adopt the same norm as in the theorem 1, namely, $\|\varphi\| = \|\sup_{|x| \le x} |\varphi(x)| \|$ for any $\varphi \in \mathcal{L}(L, M)$. The same reasoning as in the first part of the proof of the theorem 1 concludes our assertion.

REMARK 2. For arbitrary L and M with unit e

$$\mathcal{L}(L, M) \supset \mathcal{L}_b(L, M)$$

where $\mathcal{L}_b(L,M)$ is the space of all the norm bounded linear mappings from L into M.

Proof. Let $\varphi \in \mathcal{L}_b(L, M)$. Any order bounded set is norm bounded in L. Hence φ maps an order bounded set to a norm bounded set in M which is order bounded.

 $\mathcal{L}_b(L, M)$ is a Banach space under the usual supremum norm and carries a natural partial order.

Remark 3. The partially ordered Banach space $\mathcal{L}_b(L, M)$ carries an order unit. Moreover, our norm satisfies that

$$||\varphi^{\vee}\phi|| = ||\varphi||^{\vee} ||\phi||$$

for any positive elements φ, ψ in $\mathcal{L}_b(L, M)$.

Proof. Let e be the order unit of M. The mapping u(x) = ||x||e for positive element x in L is additive. Therefore it has a linear extension, say u again, on L. For x positive and $\varphi \in \mathcal{L}_b(L, M)$ it is true that

$$\varphi(x) \leq \|\varphi(x)\|e \leq \|\varphi\|\|x\|e = \|\varphi\|u(x)$$

and hence $\varphi \leq ||\varphi||u$. It follows that u is a unit and moreover, for positive elements φ and φ of $\mathcal{L}_b(L, M)$, because of the inequality

$$\varphi^{\vee}\psi \leq (\|\varphi\|^{\vee}\|\psi\|)u$$

it is true that

$$\|\varphi^{\vee}\phi\| \le (\|\varphi\|^{\vee}\|\phi\|) \|u\| = \|\varphi\|^{\vee}\|\phi\|.$$

This completes our proof.

References

- [1] B. Vulikh; Introduction to the theory of partially ordered spaces. Wolters-Noordhoff Pub. Co., 1967.
- [2] J. Kelley & I. Namioka; Linear topological spaces. Van Nostrand Pub. Co., 1963.

Seoul National University