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THE STRUCTURE OF 2(M, L)
By Joxesik Kiat

1. Introduction

The global theory of the space L(E, F) of all order bounded linear mappings from a
linear lattice E into a linear lattice F is actively investigated. In particular, when Fis
an (L)-space, many theorems in the case F is the space of real numbers can be extend-
ed. In this connection we shall give a structure theorem of Z(AM, L) (cf. Def 1). We
shall also give some remarks on the structure of 2(L, M) as a dual case.

For definitions we refer to Kelley and Namioka "2] and for elementary calculations we
refer to Vulikh 71°.

2. Definitions and notations.

Throughout this paper M is an abstract (M)-space with an order unit ¢ and L is an
abstract (L)-space. We say that a subset A of A (or L) is order bounded if A is con-
tained in an interval

[z, y]={2=M (or L) z=z=y}.

DEFINIrION 1. L(Af, L) (resp. £(L,M)) is the space of all the linear mappings from
M(resp. L) into L(resp. M) which map every order bounded set in M (resp. L) to an
order bounded set in L (resp. M).

3. Theorem

THEOREM 1. L(M, L) is an abstract (L)-space under the norm \lp||=|lsupy.uale(z) ||
Jor any o=LM, L).

Proof. We notice that [jpli=[lsup y:vs.](2) ], which clearly exists. [l¢]l is 4 norm
for 2(M, L). In fact, if lp||=0, then sup ., |¢{x)|=0 and hence ¢p=0.

lagll=llsup y.uzlep(@) |l
=[Heal sup yeis [@(@) |l
=lalll sup jcisle@ |l
=|alllgll
for any scalar « and any o=.L(M, L).

lo+gli=llsup 1eya| (+¢) () 1]
=llsup w:vale@) +o @)1l
=lsup ysialo(@) | +supiaiald @) |

ZHSUan ugxl(/’(x) l ” +J)sumzml¢($) l f
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=[lpll+1gll

for any ¢, 4=L(M,L).

The norm |pi| is compatible with the order, that is, if {p|=|¢|, then lipi=lgl.
Clearly our norm is monotonic on the positive cone of £(3, L), that is, if 0=¢=¢,
then [lpll=li¢ll. Therefore it is enough to show that llpll=|l|¢]|ll for any e=£(M, L).
But

Helll=llsupi=ial ol )
=lsupi=ns.-20| @] @) |1l
=|lsupu <z, s20l¢| (2l
=llsupi =iz, 208UP 1315 [0 (M ||
=|lsupusng. <20l (2) ||l
=llpll.

Now let us prove that our norm is additive on the positive cone of £L(M,L). We
notice that if p= (M, L) and ¢=0, then {lpll=[lp(e)ll. Therefore, if ¢, p=.L(M, L)
and ¢=0, ¢=0, then

llp+oli=1(p+¢) @}
=llp(e) +¢ (@l
=lo@Ill+lg@1.

Hence llo+¢{=lloll+llgll.

To finish our proof, it remains to show that £(M, L) is a Banach space. To prove
this, it is sufficient to prove that

1) if a sequence {p,} (9.=0) is decreasing and converges to zero in order, then {p,}
converges to O in norm, and that

2) if a sequence {p,} (p,==0) is increasing without order bound, then sequence of
norms {{{e.ll} increases without bound. (cf. Vulikh [17])

But [lou=llp. (@]l and (inf,p,) (&) =inf,(p.()) =0. Hence 1) holds. If {p.} is in-
creasing without bound, then so is ¢.{¢) and hence [lp,(e))| is increasing without
bound.

This completes our proof.
We shall state some remarks on £(L, M).

REMARK 1. If L has an order unit u and M is Dedekind complete, then L(L,M) is a
normed lattice.

Proof. We shall adopt the same norm as in the theorem 1, namely, |¢f=
llsupizs. lo(@) |)] for any p=L(L, M). The same reasoning as in the first part of the
proof of the theorem 1 concludes our assertion.

REMARK 2. For arbitrary L and M with unit e
2L, M)DL,(L, M)
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where £,(L, M) is the space of all the norm bounded linear mappings from L into M.

Proof. Let 9=.4,(L,M). Any order bounded set is norm bounded in L. Hence ¢
maps an order bounded set to a norm bounded set in M which is order bounded.

Ly(L, M) is a Banach space under the usual supremum norm and carries a natural
partial order.

REMARK 3. The partially ordered Banach space L,(L, M) carries an order unit. More-
over, our norm satisfies that

leVall=lielVigh
Jor any positive elements ¢, ¢ in L,(L,M).

Proof. Let e be the order unit of M. The mapping u(z)=|lz|le for positive element
z in L is additive. Therefore it has a linear extension, say z again, on L. For z positive
and p=.0,(L, M) it is true that

o (@) =llp(x) lle=llplllzlle=lpllx ()

and hence ¢=|pllz. It follows that # is a unit and moreover, for positive elements ¢
and ¢ of £,(L,M), because of the inequality

oVo=(llolVIglDu,
it is true that
lloVoll= (il ViiglD el =llolVIi&l.
This completes our proof.
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