A PROPERTY OF NORMAL MEROMORPHIC FUNCTIONS WITH NON-NORMAL SUMS

BY

CHOI, UN HAING

INHA UNIVERSITY, INCHON, KOREA.

It is known ((1) and (2)) that the sums and the products of normal functions need not be normal. In this note we shall present a simple result concerning two meromorphic functions whose sum is not norma

If f(z) and g(z) are normal meromorphic functions in the unit disc D and h(z) = f(z) + g(z) is non-normal in D, then there exists a sequence of points $\{z_n\}$ in D, $|z_n| \to 1$, such that, either

$$\lim (1-|z_n|) |f'(z_n)| = \infty \text{ or } \lim (1-|z_n|) |g'(z_n)| = \infty$$

Assume the contrary. Then there exist positive constants

 $r_1(<1)$, $r_2(<1)$, K_1 , and K_2 such that

$$|f'(z)| < \frac{K_1}{1-|z|}$$
 for every z, $r_1 < |z| < 1$, and

$$|g'(z)| < \frac{K_2}{1-|z|}$$
 for every z , $r_2 < |z| < 1$.

Let
$$K=K_1+K_2$$
, $r=max(r_1, r_2)$. Then

$$|h'(z)| = |f'(z) + g'(z)| < \frac{K}{1 - |z|}$$
 for every $z, r < |z| < 1$.

We shall complete the proof by showing that h(z) is normal.

We can choose r so that f(z) has no pole or zero on |z|=r.

For z, r < |z| < 1, we have

$$\frac{|h'(z)|}{1+|h(z)|^2} \le |h'(z)| < \frac{K}{1-|z|} < \frac{2K}{1-|z|^2}$$

Let $|z| \le r$. Since h(z) has only finitely many poles in $|z| \le r$, say at z_1, z_2, \dots, z_m , then for a sufficiently small neighborhood of each z_i , $i=1,2,\dots$, m, we have the following expansion for h(z):

h(z) =
$$a_{-ni}(z-z_i)^{-}_{n_i} + \cdots$$
, where $a_{-ni} \neq 0$.
Thus h'(z) = $-n_i \ a_{-n_i}(z-z_i)_{-n_i-1} + \cdots$, in otherwords,
$$\left| \frac{h'(z)}{h(z)} \right| = \left| \frac{-n_i}{a_{-ni}}(z-z_i) \right|^{2n_i - (n_i + 1)} (1 + 0(z-z_i))$$

Hence, there exists a small positive real number d such that

$$\left| \frac{h'(z)}{h(z)} \right| < \left| \frac{n_i}{n_{-n_i}} \right| + 1 \quad \text{for } z, \ |z - z_i| < d.$$
Thus
$$\frac{|h'(z)|}{1 + |h(z)|^2} < \left| \frac{n_i}{n_{-n_i}} \right| + 1 \quad \text{for } z, \ |z - z_i| < d.$$

If z is in $|z| \le r$ and $|z-z_i| > d$ for every $i=1,1,\dots,m$, since h(z) is analytic in the compact set

$$F = \{z: |z| \le r\} - \bigcup_{i=1}^{m} \{z: |z-z_i| < d\}, \frac{|h'(z)|}{1+|h(z)|^2}$$

a real-valued continuous function on F attains its maximum M on F.

Let
$$K_1 = \max \left\{ M+1, \left| \frac{n_i}{a_{-n_1}} \right| +1, \left| \frac{n_2}{a_{-n_2}} \right| +1, \cdots, \left| \frac{n_m}{a_{-n_m}} \right| +1 \right\}$$

Then, for every z, |z| < r, we have

$$\frac{|h'(z)|}{1+|h(z)|^2} < K_1 \le \frac{K_1}{1-|z|^2}$$

Let $K_2 = \max(K_1, 2K)$. Then

$$\frac{|h'(z)|}{1+|h(z)|^2} < \frac{K}{1-|z|^2}$$

for every z in D and h(z) is normal in D.

References

- (1) Lappan, P., Non-normal sums and products of bounded normal functions. Mich. Math. J., 8, 182-192, (1961).
- (2) Lehto, O.and Virtanen, V.I., Boundary behavior and normal meromorphic functions. Acta Math. 97, 47-63, (1957).
- (3) Kam-Fook Tse, On the sums and products of normal functions. Comment. Math. Rikkyo Daikaku XV 11-2, 63-72, (1969).