ON NORMALITY OF SOME PRODUCT SPACES.

Ву

C. H. PARK

Chungbuk National College, Korea.

Introduction. In this paper, all spaces are assumed to be Hausdorff. Sorgenfrey's example of a pair of normal spaces whose product is not normal is well known. we will discuss here subsequent work on the problem of suitably restricting spaces X and Y to make $X \times Y$ normal. By giving some particular conditions to Y, if $X \times Y$ is normal, we will note the fact that can take place with the Stone-Ĉech compactification βX of X. Now the following will be showed:

- (1) $X \times Y$ is normal if and only if X is Tychonoff space and (Y, h) is a compactification of X such that h(X) is C^* -embedded n Y.
- (2) If $X \times I$ is normal for any (Hausdorff) space X there is a continuous $F : \beta X \rightarrow I$ such that

commutes.

The central useful fact about the Stone-Cech compactification is an extension property, given by the following lemma 1.

DEFINITION. If, for each $\alpha \in A$, $f_{\alpha}: X \to X_{\alpha}$, then the evaluation map $e: X \to \prod X_{\alpha}$ induced by the collection $\{f_{\alpha} | \alpha \in A\}$ is defined as follows for each $x \in X$, $[e(x)]_{\alpha} = f_{\alpha}(x)$. That is, for $x \in X$, e(X) is the point in $\prod X_{\alpha}$ whose α th coordinate is $f_{\alpha}(x)$ for each $\alpha \in A$.

LEMMA 1. If K is a compact Hausdorff space and $f: X \rightarrow K$ is continuous, there is a continuous $F: \beta X \rightarrow K$ such that $F \circ e = f$.

In binormal space lemma 2 is well known. This can be used to prove lemma 3.

LEMMA 2. Let X be normal space. The following are then equivalent:

- a) X is countably paracompact,
- b) each countable open cover $\{U_n | n=1, 2, \dots\}$ of X is shrinkable,
- c) each sequence $F_1 \supset F_2 \supset \cdots$ of closed sets with empty intersection has an expansion to open sets $G_i \supset F_i$ with $\bigcap G_i = \phi$.

COROLLARY. Let X be Lindelöf space, then X is countably paracompact if and only if X is metacompact.

LEMMA 3. Let X be Hausdorff space. then X×I is normal if and only if X is binormal.

Now let X be a Tychonoff space. If (Y,h) is a compactification of X such that h(X) is C^* -embedded in Y, since (Y,h) is the Stone-Cech compactification of X, we will conclude the fact that $X \times Y$ is normal. We will take the time now to present the following theorem; it is interesting for other reason also.

THEOREM 1. Let X be a Tychonoff space. If (Y, h) is a compactification of X such that h(X) is C^* -embedded in Y, the followings are equivalent:

- a) X×Y is nosmal,
- b) for each closed set $F \subset Y X$, there is a locally finite open cover $\{U_{\lambda} | \lambda \in \Lambda\}$ of X such that $(Cl_{Y}U_{\lambda}) \cap F = \phi$, for each $\lambda \in \Lambda$,
- c) X is paracompact.

Note the reference about the proof above. let X be a Hausdorff space. If $X \times I$ is normal, the extension property about the Stone-Ĉech compactification βX of X will be satisfied that is:

THEOREM 2. If $X \times I$ is normal for any (Hausdorff) space X, there is a continuous $F : \beta X \rightarrow I$ such that

commutes.

Proof. Suppose $X \times I$ is normal. Clealry X will be normal. But from Lemma 3 X is binormal. Then each sequence $H_1 \supset H_2 \supset \cdots$ of closed sets with empty intersection has an expansion to open sets $V_n \supset H_n$ with $\bigcap V_n = \phi$. Also since X is normal, there is a sequence $F_1, F_2, F_3 \cdots$ of closed sets with

$$\bigcap F_n = \phi$$
, $V_n \supset F_n \supset H_n$.

let $W_n=X-F_n$. Let A be the complement in $X\times I$ of .

$$[W_1 \times [0, 1)] \cup [W_2 \times [0, \frac{1}{2})] \cup \cdots$$

and let $B=X\times\{0\}$. Then A and B are disjoint closed sets in $X\times I$, so there is a Urysohn function $f: X\times I\to I$ with f(A)=0 and f(B)=1.

Let g be the restriction of f to X, then g is continuous on X. By virtue of Lemma 1 there is a continuous extension F of g which carries βX into I.

Reference

Stephen Willard, General topology, Addison-wesley, 1970.