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Introduction. In this paper, all spaces are assumed to be Hausdorff. Sorgenfrey’s example of
a pair of normal spaces whose product is not normal is well known. we will discuss here subse-
quent work on ths problem of suitably restricting spaces X and Y to make XXY normal. By
giving some particular conditions to Y, if XxVY is normal, we will note the fact that can take
place with the Stone-Cech compactification SX of X. Now the following will be showed:

(1) XxY is normal if and only if X is Tychonoff space and (Y,h) is a compactification of X

such that h(X) is C*-embedded n Y.
(2) If XxI is normal for any (Hausdorff) space X there is a continuos F : X—I such that
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commutes.

The central useful fact about the Stone-Cech compactification is an extension property, given by
the following lemma 1.

DEFINITION. If, for each acA, f, : X—X., then the evaluation map e : X—~T X, induced by
the collection {f.|a@=A} is defined as follows for each x=X, [e(x)].=f«(x). That is, for x=
X,e(X) is the point in T[X. whose ath coordinate is f;(x) for each a=A.

LEMMA 1. If K is a compact Hausdorff space and f : X—K is continuous, there is a continuous
F : BX—X such that Foe=f,

In binormal space lemma 2 is well known. This can be used to prove lemma 3.

LEMMA 2, Let X be normal space. The following are then equivalent :

a) X is countably paracompact,

b) each countable open cover {Ua|n=1,2,--:} of X is shrinkable,

¢) each sequence F1DFy D eeee of closed sets with empty intersection has an expansion to open

sets G;DF; with NGi=¢.

COROLLARY. Let X be Lindeldf space. then X is countably paracompact if and only if X is

metacompact.



LEMMA 3. Let X be Hausdorff space. then XxI is normal if and only if X is binormal.
Now let X be a Tychonoff space. If (Y,h) is a compactification of X such that h(X)

is C*-embedded in Y, since (Y,h) is the Stone-Cech compactification of X, we will conclude
the fact that Xx Y is normal. We will take the time now to present the following theorem; it
is interesting for other reason also.

THEOREM 1. Let X be a Tychonoff space. If (Y,h) is a compactification of X such that
h(X) is C*-embedded in Y, the followings are equivalent:

a) XxY is nosmal,

b) for each closed set FCY—X, there is a locally finite open cover {U;JAe=A)} of X such

that (CyU)) NF=¢, for each AEA,

¢) X is paracompact.

Note the reference about the proof above, let X be a Hausdorff space. If XxI is
normal, the extension property about the Stone-Cech compactification SX of X will be satisfied.
that is :

THEOREM 2. If XxI is normal for any (Hausdorff) space X, there is a continuous F i §X—1
such that
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commutes.
Proof. Suppose X xI is normal. Clealry X will be normal. But from Lemma 3 X is binormal.

Then each sequence HiDHzD -+ of closed sets with empty intersection has an expansion to open
sets V,OH, with (\V.=¢. Also since X is normal, there is a sequence Fy, Fg, Fae+eooe of closed
sets with

NFr=¢, VaDFsDHa.
let Wo=X~Fn Let A be the complement in XXI of .

[W1x [0, 1)JU[W2x [0, %)] Uoreres

and let B=Xx {0}. Then A and B are disjoint closed sets in X XI, so there is a Urysohn func-
tion f: XxI—I with f(A)=0 and f(B) =1.

Let g be the restriction of f to X, then g is continuous on X. By virtue of Lemma 1 there is
a continuous extension F of g which carries 8X into L
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