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Nonlinear Models in Analysis of
Variance and a Functional Equation

Seiji Nabeya*

Part I. Nonlinear Models in Analysis of Variance (Abstract from Doksum [1])

In the one-way layout the linear model in the‘analysis of variance can be written
in the form

Zi=u;+Eij =1, cccooymy 1=1, .,k
where Z,; are the observable random variables, g,
pared, and E;; are i.i.d. (independently and identically distributed).
We consider in pafticular the two sample case. Let X|, ...... , X, be ii.d. according
to Fand Yy, ...... ,Y, be i.i.d. according to G. In the case of the linear mode! there
exists a constant 4, such that F(x) =G (x+4d) for all x.
When the linear model assumption is not satisfied, we consider the shift function
1) A(x) =inf{4; F(x) <G (x+4)}
=G (F(x)) —x
introduced by Lehmann [3], where G! is defined by
G '(u) =inf {x;u<G(x)}.
4(x) is defined for all points of support S(F) of F:
x&ES(F)={x; 0<F(x) <1}.
Theorem 1.1 For arbitrary distribution functions F and G, x+ 4(x) is non-decreasing

and X+4(X) is stochastically no smaller than Y.
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Theorem 1.2 (i) If F is continuous, then X+4(X) has the same distribution as Y.
(i) If F is continuous, if X+ 4*(x) has the same distribution as Y, and if zx+ 4* {x)
is non-decreasing, then 4*(x) =4(x) a.s. in S(F).
In a similar way as (1) we define
8(y) =sup{6; G(y) <F(y—6)}
=y—F1'(G)
for y&S(G).
Theorem 1.3 Suppose that F and G are continuous.
(i) If F is strictly increasing on S(F), then
4{x) =9 (x+4(x)) for x&S(F).
If G is strictly increasing on S(G), then
9(x) =4(x—0(x)) for xES(G).
Theorem 1.4 Let 4 be a constant. If F is strictly increasing on S(F) and if F(x)
=G (x+4) for all x, then 4(x)=4d for *&S(F) and 9(x) =4 for xES(G).
Theorem 1.5 Let F and G be continuous and strictly increasing. If 4(x)=60(x) for
all xR, then there is a constant 4 such that F(x)=G(x+4) for all xER. .
<Proof> The equation 4(x)=6(x) can be written as -
@ G- (F(x) ~1=2—F'(G(x).

If we put f(x) =G '(F(x)), then f is also continuous and strictly increasing, and (2)

reduces to

®3) flx)=2x—f"(x).
Inserting f(x) in place of x in (3) we have
4 f(f(x)=2f(x) ~x.

In Theorem 2.3 below we can state that any continuous function f satisfying (4)
must be of the form f(x) =x+A for some constant 4, from which it follows that
G- (F(x)) =x+4, hence F(x)=G(x+4).

Note : If we put g(x) =f(x) —x, then (4) is converted to
(®) glx+gx))=g(x).

This is called Euler’s equation and it was solved by Wagner [5] for the first time.

Let F, and G, be empirical distribution functions of X,, ...... , X, and Y;, ...... , Y.,
respectively. Then

d(x) =G, (Fa(x)) —x

is clearly a nonparametric estimate of 4(x).
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On the contrary, if Fis N(z,0,% and G is N{us, 0;%), then we have
4A(x) =—g—f(x—ﬂ1) + =1,
hence
4,(x) =—§f—(x—X_) +V—»

is a parametric estimate of 4(x).
Doksum develops a theory of confidence bands for 4(r) and he also obtains the

asymptotic distribution of the stochastic process +/ m+n (AA(x) —A4(x)) under suitable

conditions.

Part II. Functional Equation f(p+qx + cf(x)) =a+bx+cf (x) (Abstract from Nabeya[4])

I succeeded in finding all the continuous solutions of the functional equation
(6) Fp+qr+rf(x))=a+bx+cf(x), '
for any given constants p,q,7,a,b, and c¢. This is a generalized form of (4) and ).
The functional equation (6) with »=0 is a special case of the equations treated in
Kuczma [2], and is not so interesting in our case. If »#0, then (6) can be converted
to
g(g(x)=p—cp+ar+ (br—cq)x+ (c+9)g ()
by putting '
&(x)=p+qx+rf(x).
Hence it is sufficient to consider the functional equation
™ F(f(x))=a+bx+cf (x).
We assume further 550 in (7), because b=0 leads to a simpler equation
FlF)) =a+cf(0),
which can be easily solved.
Theorem 2.1 Let f be a continuous solution of (7) with b+0. Then f is strictly
monotone and it maps R continuously onto itself.
By this theorem we can define the continuous and strictly monotone inverse function
f1. If we define furthermore
P@=x FFIO=FFE), =), =12,
then f*(x) (n=...... ,—1,0,1,...... ) can be written as
P (x) =a,+8.x+c.f(x),

where a,, b, and ¢, satisfy a system of linear homogeneous difference equations:
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(8) Qi1 =a,+aAC, Dyo1=bCa, Cas1=ba+CCpe

The characteristic equation of (8) is

(p—1) (p*~cp—b) =0,

which always has a root p=1. We denote the other two roots by p, and p,. The
nature of the solutions of (7) differs very much depending on the values of p; and p,.

I shall state the results for two cases.

Theorem 2.2 Let 1<p,<p,

(i) Then we have two linear solutions

@1 (%) =p1x— and @,(x) =p.x—

a a
-1 a—-1"
which intersect at £=a/(1—b—c).
(i) Every continuous solution f of (7) satisfies
$i(2) 2f (1) 2. (1) if 2<&,
i (x) Sf(x)£4,(x) if x>§,
f(§)=¢,

and

© = LEZLD <) for any ay.

(i) Let x, and x, be any two values such that
xo>§ and ¢, (%) <1156, (%)

-and define x,=a+bx,+cx,. Let f, be any continuous function defined in the interval
[x0, x,]satisfying f,(x,) =x,, f1(x,)=x, and the condition (9) in the interval [x,, x,].
Then we can construct a continuous solution f of (7) in the interval (¢, oo), which
coincides with f; in the interval [x,, x,].

Similar situation holds also for the interval (—oo, §).
vy Any continuous solution of (7) is differentiable to the right and to the left at
x=§. .'

Theorem 2.3 Let p,=p,=1.

(i) If @=+0, then (7) does not have a continuous solution.

(ii) If a=0, then cvery continuous solution f of (7) is of the form .
(10) flx)=x+4

for some constant 4. Any function of the form (10) is a solution of (7).
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