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I. Following Harry Johnson's suggestion [1] that the monetary theory be incor-
porated into the current literature of growth models, there have been many such
attempts beginning with Tobin's 1965 Econometrica article ((2], [6], (7], (8], [9).

In most of those macroeconomic models, microeconomic foundations are assumed
away. For example, the aggregate savings functions and demand for “money” are
assumed to be functions of certain arguments such as per capita capital stock,
expected rate of inflation, per capita disposable income and so on.? Furthermore
the signs of the first-order derivatives of those functions are assumed to be positive
or negative with some intuitive explanations.® If we look at the microeconomic
behavioral analyses of each economic unit, those common sense explanations may not
be justified. Thus Sidrauski says, “The major limitation of this analysis is given by
the fact that we have postulated a savings function and a demand function for a real
cash balances that ére not explicitly derived from the maximizing behavior of the -
individual economic units of the economy.”®

The purpose of this paper is to show that the functional properties in those aggre-
gate equations can be derived from the microeconomic behavioral analysis rather than
assuming them away, and in some cases, the commonly assumed sign properties of
those functions may not be justified. )

. We shall begin with a representative behavioral unit. We shall assume that the
individual economic unit faces the following situation: he has a constant income flow,
w, for his planning horizon [0, TJ; w will be divided into consumption and savings;

the savings will further be divided into an income vielding asset, S, and the non-
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1) See equations (5) and (12) in [1] among many others.

2) Sidrauski’'s paper [6] is an exception. He sets out the model but does not do what can be done
as Jorgenson points out in [43.

3) Sidrauski (7], p. 809.
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interest bearing government debt, m, i. e., his asset portfolio consists of S and m; and
his initial savings or wealth is given by S,; S yields a constant interest rate 7.
Then the growth path of the income yielding asset is given by
S=rS+w—C,—m, 1)
where C, is the consumption of ¢, and S, is given. m, is the flow of the non-interest
bearing asset, and thus if M is the stock of this asset, we have
M=m.® _ (2)
We shall further assume that the holdings of the non-interest bearing government
debt, M, is providing certain services such as time savings in transactions, the tran-
sactions cost in converting M, into S; and so on. Thus M, enters into utility function.®
Then' the economic unit has an instantaneous utility function U(C, M), which is
concave with respect to C, and M, and twice continuously differentiable. At the end of
his planning horizon, he leaves S; and M as bequests, and the bequests yield a certain
utility to him, say Q(S;, M;). @ is assumed to be in the same class as U function.

Then the representative consumer's problem can be stated as follows:
Maximize | U(C, M)edt+Q(Sr+My)e=" (3)

subject to (1) and (2), where a is the subjective discount rate.

From the first order conditions of the maximization problem, we have

S,=#S,+w—~C,— M, : (4)
a,C/C,+a;M/M=r—e, (5)
where a,=—U,,C/U,, a,=—U,,M/U,
’ U/U=r (6)
Q' (Sr+ M) =U\(Cr, My). @)

All the variables are evaluated at the optimum arc.

Now (6) can be written as

UZ (Ctv M)/UI (Ct ’ M) =g (C, y M) =7, i. €.,

. g(C, M)—r=0. (8)
Since 9g/0C,#0, we get C,/=g*(M,, r). (9)
From (5) and (9), we have

M=(r=a)/(agu*/g* +as/M). (10)

4) Later on we shall see that M, is endogenously determined.
5) This argument is well established by Patinkin (5] and Sidrauski (6].
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Thus the optimum path of the system (4)— (7) can be described by (4), (7), and (10).

Before we consider the system of differential equations (4) and (10),

consider
gu(M., r)/g*(M,, n\=Z(M,, 7).

Thus we have from (11)
* —oX
o2/0M=LBREL (.0
Equations (4) and (10) can be written as
M=F(M,, S,
S.gZG(M, St)'

Consider the steady state solution, i.e., M,=0 and S,=0

We have
45, __09F JoF
dM,] oM/ BS
_dS, _9G /8G
aM, oM/ &S’
. 8,=0
where
o~
= =) (w1 —erygr )/ (@ Z /M)
oF
25 =0
9G __ ot , oF
oM~ oM ' oM
oG _
O

we shall

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

We have shown that -9 <0 in (12). Thus we conclude that -o=>0 in (17)."

Case 1: ! l< 8M.
In this case we know that —}S—— - =co and
M;=0
-,f—s’-i <0 from (15)—(20).
1$r=0

6) From (8) and (9), we have dC,=gff df,, and thusi%;:gf{. Thus

a*C dcC, 1 . J
g§M=m%-=0 becausegﬁ;:—;—, where 7 is constant. Note %:g (G, M)=r.

7) We are assuming that r—a>0, «,>0 and a;>0, i. e, M, and C; are complements.
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Then the following phase diagram explains the possible time path for M, and S, Of

course the time path of M, determines that of C, in the sense of equations (8) and

9).
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We shall show later on that for each given S;, M, is determined endogenously.
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In this case we have —ji‘-\ = >0. Then the optimal time path can be shown by the
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In either case the optimal time path depends on M, for a given S;. Now we shall

show that M, is determined as an endogenous variable in terms of S, and all the other

parameters. From (4), we have

Sre =Syt | Cw=C(CaT) = MM T) Jedt 1)

and (9) yields
=g* (M, 7) (22)
Further (7) implies @(Sy+M(Cy, My, T)I=U.(T, C,, M) (23)

Now we can see that C,, M, and S, can be solved in terms of S, and all the other
parameters of the model in (21), (22) and (23).

We shall consider the following case as an example. Let U=C'-"M'-* and Q=AW
where 0<a<1, 0<b6<1, a+b>1®, 0<c<1, A=constant, and W=Cr+ M,

Then we have gﬁ =—%:—zg— %—=r, (24)
and a,=a, a,=(b—1) (25)
Thus (5) becomes
oG+ (b=1)Y=r—a (26)
Further (24) implies that M——(—llll)--—c cr
v p T r(l-a) *
' M/M=C,/C, @)

Then (26) and (27) provide the following solutions

—C ot e TR
C=Coe™s v= a+b—1

M=My" (28)

Now (1) and (28) give
Sre~ "' =S,+ j: (w—Coe"' —vMye™) e™"dt (29)

And {7) and (28) give
B(Sr+ M) *=(1—a) (Coe™) ~*(Moe™) ", B=(1-0)A (30
Further (28) gives

_ (1-d
M"___r(l—a) C, 3L
Thus £29), (30), (31) will give a solution for C,, M, and S; in terms of S, and all
. _fUuUlzf_ _ _ _2a g~ L
8) Since IUI—;U“UMI—(I a) (1=-8)C-*M-*(a+b-1),

JUI>0 if a+b>1. This makes U concave in C and 1.
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the other parameters.
H. Inthe example, we have shown that the optimal time path for C, and M, are given

by (28). Thus the comparative dynamics properties with respect to », for example,

depend on the signs of ‘fgf’ nd 31 , L e,
i T (32)
aM. _ &t dM; .
and LY s Mo ‘;“’ (33)
But we know %=7¢%—T>° Thus we have to know the signs of dC° and dgf"
in order to determine the signs of 'fic° and dj;l‘ .
Consider (29), (30) and (31). In (29), we note that
Sr=¢"S,+ (w—Ce" —rMe) B (7), (34

where ()= —-(e"’~1) Further note that B(r) <0 and

B (r) =k (1—eT(1+T1>0.7
We shall define @,(r)=8(r)e'" and Q,(r)=7vQ,(r).
Then Ql, (’,) =ﬁle71‘+ ,Y,Tﬁ (r) efT <010), Y,=-a_~l.-_ztiq> Oy

and Q' (r) =v'Q,(r) +vQ/ (r) <0 because @,(r) <0.
Then the total differentiation of (34) gives us
dSr=0Q,(»)dCo~Q, (r) dM,+ b,dr, (35)
where b,=S,Te’" +wp —CoQ,' —M,Q.'. Now consider equation (30). Solving Sr, we have

ST= - Moerr + ZCoieTTSMonerTn, 7= 1 _ba-T s 6=,£Cl_’ n= b ‘C" 1 .
The total differentiation of the above equation provide
dSr=0,,dCo + ar;dM,+ b,dr, (36)

where a§2=Zer”'*"’ Mo"aCod- 1 s 023=ZC0637T(6+")71M0”-‘ —_ e'T,
by=Z2C'M"T (8 +n)Y'ex” (5+n) =M, Tv'e’™.

Further from the total differentiation of (31), we have

9) We mean e~ T(1+7T7) <1 or 1<e*™=Tr. If r=.05, T=30, rT=1.50.
Thus ¢eT—=Tr=(2.87)'*—~1.5>1.

10) Here we are assuming that (§'+—— +b —1£)<0. Note that 0< (a+b—1) <1, and £'>0,8<0.



Rhee: Monetary Dynamic Models 43
0=03,dCy—asdM,+bydr, 37}

_1-b 1 pem__(1=D)
where a——m, a;=1, ‘br— 7—a) "

The equations (35), (36), and (37) can be written as
Ay, 25z ais dS,/dr b
a1 @ 2| [dCo/dr | =[] or AX=y, (38)
0 ap a; dM,/dr by .
+ + - + 1D

when ey=a,=1, ¢,=Q,, @;;=Q, Since A={+ + +| and y=|2{,

0 + — +

we have |A| <0

+_......

? + +
id‘s;L=_+++ =?

(=)

+ + -

+ 2 +
dCy __ I
G

+ — +

+ + +
dMo:: 0 + 4 =2
d’ (__) —

+ - +

+ + -
aM, _ 1o + G
a1 ) <0.
aM,

Therefore we conclude that 7 <0 only if 5,<0, i.e.,, when the interest rate rises,

ceteris paribus, the initial holdings of non-interest bearing assets will rise. Furthermore

(33) implies. that even if L}f"—(O, we cannot say for sure that da{:’l‘

L0 for all ¢.

By the same method, we get the following system.

11) b=ZCsMP S 4+n) TY e - My Te' T=(+) = (+) =?
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1 Q@ @\ [dS;/dS, e
1 ax a5 {dCo/dS,|=]|0 (39)
0 as, =1 \dM,/dS, 0

Thus we have

Lr={=3>0 | (40)
dCy __(+)
=< 4y
M, _ _(+)
&= < 4

Again the results of (41) and (42) must not be interpreted as —(—i:s.—-<0 for all ¢;
1]

should be interpreted in terms of (32) and (33).
When the flow of income, w, is changed, ceferis paribus, we have the following

results.
1Q, Q dSr/dw \. .3

1 ay ay| |dCo/dw |=10 (43)

0 a; —1 aM,/dw 0

Thus 45 = E+§ <0 (44)
dco _ (=) o 15
dw — (—) >0 (49)
dMO —_ (j__)__ .‘,
dw (=) <o. (19

From (32) and (45), it is clear that *—’ >0 for all £ It is not, however, certain

whether dM‘ >0 for all ¢; (46) implies that the initial holdings of M, will be smaller

. . . . dM,
when the flow of income w rises but according to (33), it is not certain _dz—vl_'<0

for all ¢
IV. As we have shown in (28)—(31), we can solve the time paths of C,, M, and 5,

in terms of S;, w, # and other parameters of the model. In general the solutions can
be written as
C=C.(Sy, w, r, 1) : (47)
M=M,(S,, w, r, t) (18)
Si=85,(So, w, 7, t). (19)
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In most of the current monetary dynamic models, the signs of the partial derivatives

of (47)—119) are assumed away. In section I, we have shown that the signs of those
partial derivatives are not the same as they are commonly assumed except %(Zf;’—>0,

Of course our investigation was based on a reasonable concave utility function and
the assumption of certainty, i.e., the assumption that there is no expectation on .
The model can be extended to bring in the expectation and to generalize the com-

parative dynamic results for a general utility function.
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