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§ 0. Introduction

Recently, K. Yano and M. Okumura [5] have defined the concept of an (f, g,
u, v, A)-structure in an even-dimensional Riemannian manifold. Hypersurfaces in
an almost contact metric manifold or submanifolds of codimension 2 in an almost
Hermitian manifold admit an (f, g, %, v, A)-structure (cf. [5] etc. ).

H. Suzuki [4] studied the integrability conditions of this structure.

In terms of this structure, D.E. Blair, G.D. Ludden and K. Yano [1], and

M. Nakagawa and I. Yokote [3] have proved

THEOREM 0.1. If M " s a complete orientable submanifold with constant scalar

curvature satisfyving Kf+fK=0 and As#constant, where K denotes the second

fundamental tensor on M 2”’, then M™" is a natural Sphere S or S"XS".

In the present paper we investigate the necessary and sufficient condition of
antinormal (f, g, #, v, A)-structure in a Sasakian manifold and study compact

hypersurfaces with antinormal (f, g, #, v, A)-structure in a unit sphere.

§ 1. Preliminaries

We consider a C~ differentiable manifold M with an (f, g, %, v, A)-structure,

that is, a Riemannian manifold with metric tensor g which admits a tensor field
f of type (1,1),two 1-forms # and v (or two vector fields associated with them),

and a function A satisfying
th ok
F%"==,
t

(1. 1) zztfz.t=/'{vi or fz-hzf: —th, v, 1,

(4

R,k bos

7 J
B hi ook
——Z“z or fz v '—za R

1 '] 2 i
wU =00 =T1—A%, up =0,

Such an M is even-dimensional ([5]).
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We put
t ¢ ¢ ¢
(1' 2) [f:f]ﬂ:f:? Vtui—fi Vtuj_ (v]fz _vz fj )H,'I'Z(Vjﬂz—vzv}),
V; denoting the operator of covariant differentiation with respect to the Rie-

mannian connection. If the tensor [f,f]; vanishes, the (f, g, #,v, A)-structure is

said to be antinormal (cf. [4]).

§ 2. Hypersurfaces in a Sasakian manifold

et M be an orientable hypersurface of a Sasakian manifold M 2”“. Then

there is an (f, g, %, v, A)-structure induced in M, which has the following
properties;
Z h, <k h, . k
(2. 2) V.u -=f--'_ Zkfi’
t
(2. 3) Vo.=— Jffz —[—;{gﬂ'

(2.4) Vi=kyu—v,

where ki; is the component of second fundamental tensor of the hypersurface M

relative to M “ntl ([1], [5]).

Since (2.2) implies that {x&EM ; Zz(x)zl} is bordered set, we may 5nly consider

1-—12#0 on M.
Substituting (2. 1)~(2.4) into (1.2), we find

(2.5)  [f. f1;=(V,D0,~(V D,

Thus, we have

LEMMA 2.1. Let M be an orientable hypersurface of a Sasakien manifold. In
order that the induced (f, g, u, v, A)-structure be antinormal it is necessary and
sufficient that it satisfies Vj}i:Avj, A being certain differentiable function on M.

We now assume that
(2.6) \Y ]-Z=A2)j,
A being non-zero differentiable function on M. Then we have from (2.4)
2.7) kg =(A+1y;.
Differentiating (2.6) covariantly and using (2.3), we find
V.V A=(V,Av,— A~k ;' +2g,),

from which,
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(2.8)  (VAv,— (V. A+ Ak, f, — by f;)=0.
Transvecting (2.8) with ' and using (1.1) and (2.7), we get
2.9) A-29V,4=0'V,A)0,+AACA+ Dy, — Ak JF, .
Substituting (2.9) into (2.8), we obtain
2 ¢ ¢ t t
(2.10) (A=2)(ky, S —kyf; )=k (0, f, ~v, f;)
because of A7#0.
Transvecting (2.10) with fz.k and using (2.7), we find

2
(=2~ k= Rpdv,— b f,°F; = — ey Do+ (R @' Do 0 4 20 0°F
from which, taking the skew-symmetric part,
2
(=2 (0 Yo;— By Do} = — (g o+ (R 0 Ak CF w— f ),
Transvecting this with #° and using 2520 and (2.7), we find
(2.11) k' =(A+1u+B,
where B= (ksrvsvt)/( 1 -—22).
Substituting (2.11) into (2.9) and (2.10), we have respectively
j 7
2 ¢ :
(2.13) (=2, S, ~kyy £ )= AB(up,—up),

where, we have put

{
vV, A
C__ZABZ ) D= 't —
1—A" » 1—4% .
Differentiating (2.12) covariantly and taking account of (2.2) and (2.3), we
find

(2.14)

ViV, A=(V,Out- (VD)o A+ C(fy;— Ak, )+ D(—ky, £, + Ag,),
from which, substituting (2.13).
: AB
(2.15) (ch)“j— (Vjc)“k"‘ (V;ED)UJ-—' (Vjp)vk_l_ chkj_l_ 1 — 22 (ujvk— ukvj) =0.

Transvecting (2.15) with "y and f “  we have respectively

— o'V C+4'V,D—AB~2C2=0,

AWV, C—4'V, D+ AB)+2C(n—1+2%) =0.

Thus, last two equations imply C=0 and consequently A4AB=0. So we have
B=0 because of A#0 and (2.6). Therefore (2.11), (2.12) and (2.13) become



222 Jae Kyu Lim and Yeong-Wu Choe

respectively
(2.17) ki =(A+Du,
b,
(2.18) kyJr —kyt; =0.

Conversely, if (2.18) satisfied on M, by transvecting ffk, we find
! ! 4 Sl
kﬁ(—c?t. ‘uutov)-—Fk,f; fj =,
Taking the skew-symmetric part of this equation, we have
: ¢ t r
(2.19) (éﬁu Yu,— (k. u )u j-l— (& e )vz-—- (k0 v J.=O.
Transvecting (2.19) with % and putting H(l—lz)=ktsutus, E(l—l‘z):ktsutvs.
we get
o -
(2. 20) kﬁu —Auj+ Bz;j.
Differentiating (2.20) covariantly and using (2.2) and (2.3), we find
(Vi) +k,(f, — Ak, )=V, Au A (VB A A(f, M, )+ B(— 1y, '+ Ag,),

i
from which, taking the skew-symmetric part with respect to 2 and j,

(2.21) (Vb — V[ D=V, A)u -~V Du,+(V,Bu,—~(V.Bv,+24f,
because of (2.18).

On the other hand, differentiating (2.4) covariantly and substituting (2.3),
‘we get

Vi VA=(Viku —(Agy—ky ;s
from which, using (2.18),
(Vo —V.k )% =0.
Thus, (2.21) becomes
(2.22) (Vi Au;— (V;Aup+ (Y, Bo,— (V B)o,+24f, =0
Transvecting (2.22) with v and f & », we have respectively
(=25 V,A—u'V,B)+2A2(1- 2% =0
and
2(0'V,A—4'V,B)+A{2n—2(1- 22} =0,

from which, A=0. Consequently (2.4) and (2.20) imply that V JZ=(E +1)v; .
Hence, using Lemma 2.1, we have
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THEOREM 2.2. Let M be an orientable hypersurface of a Sasakian manifold such
that the function A is not constant. In order that the induced (f, g, u,v, A)-structure
be antinormal it is necessary and sufficient that Kf+fK =0, where K is the second
fundamental tensor of M with respect to Sasakian manifold.

§ 3. Compact hypersurface in a unit sphere

Let M be a hypersurface immersed in a unit sphere SZ’HI(I) with canonical
almost contact structure. Then there is an (f, g, %, v, A)-structure induced in M,
which satisfies (2.1)~(2.4).

We now denote by Rkﬁh

tensor, the Ricci tensor and the scalar curvature of M. The equation of Gauss

, Rﬁ and R components of the Riemannian curvature

for the hypersurface M is written as

(3.1 R, =0, g;—0; guthy ky—k ky
and the equation of Codazzi is given by

(3.2) V% j;—V ;=0

From (3.1) it follows easily that

(3.3 —(212 gtk kﬂ—k Ze

(3.4) R=2n(2n—1)+ (%, ) -—kstkﬂ.

We prove the following (cf. [3])

THEOREM 3.1. Let M be a compact hypersurface with antinormal (f, g, u,v, )

-structure tn a unit sphere gen+1 (1). If A is not constent, then M is congruent
2
to () or S™( 45 )xS"( ) imbedded naturally in S*H (D).

PROOF. Since M has antinormal (f, g, #, v, A)-structure, (2.7), (2.16), (2.17) and
(2.18) are valid on M. From (2.18) we can easily prove that

(3.5) k' =0.
Differentiating (2.17) covariantly, we find
(Vi dv +R, V0 =(V,Du+(A+ 1V %, ,
from which, using (2.2), (2.3), (2.18) and (3.2),
(3.6) ok, by f; =V, Au,— (V. Au,+2(A+1f,; .

Transvecting (3.6) with uj and taking account of (2.7), (2.16) and (2.17),
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we have
(3.7) (1-2HV, A= —22(A+1)(A+2), .
Substituting (8.7) into (3.6), we get
(1~ Ok By £, = AA+ DA+ 2 (0 g~ 0,8)+ (A=~ 2)(A+Df,
from which, transvecting f  and using (2.7) and (2.17),
(3.8) k' =2(A+1)(A+2-n).

Since M is compact, from (3.2), (3.5), (3.6) and (3.7), we can prove that
(A+1)(A4+2)=0 (See [2], [3]). Thus, (8.5) and (3.8) imply that R is constant.
Taking account of Theorem 0.1, Theorem 3.1 is proved. -
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