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ON AN APPLICATION OF THE STEREOGRAPHIC
PROJECTION TO CP”

By Shun-ichi Tachibana

§ 0. Introduction. Let M" (resp. M”") be a Riemannian space of metric g (resp.
g’) and ¢ a diffeomorphism from M" to M”". If ¢ maps any geodesic in M” to a

geodesic in M”", it is called projective. The projective curvature tensor W is
preserved by any projective map ¢, i.e. we have W=¢*(W’). For a diffeomor-

phism ¢ if there exists a scalar function ¢ such that qﬁ*(g’):ezag, we call ¢
conformal. The conformal curvature tensor C is preserved by any conformal map.

" Let K" be a Kdhlerian space and I” #lu Christoffel symbols with respect to a local

coordinate {zz}. A curve ¢ in K" is called a holomorphically planar (or H-plane)
curve if ¢ is represented as z'.{:zz(t) and satisfy

2 A
dz |F2_dzﬁ dz __dz
77 T ru dr df dt ’

where « is a complex-valued function of £, [9], [11]. |

Consider a diffeomorphism ¢ of K" to another K’". An H-projective map is a
diffeomorphism which maps any H-plane curve to an H-plane curve. A holomorphic
¢ is H-projective if and only if there exists a self-adjoint vector p; such that

P 2 1,
6 =T +00,+070,

where r ﬂzu mean the Christoffel symbols of K. |

We have known a lot of theorems about H-projective maps which correspond
to ones of projective maps, [9], [11]. Especially, corfeSponding to W, the H-
projective curvature tensor P has been shown as an invariant under H-projective
maps, [11]. ‘

Now it would be natural to ask for a diffeomorphism ¢ of K" to K" having
the property x such that

projective: H-projective=conformal : x.
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It seems that the Bochner curvature tensor K of K gives support to the existence
of x. Because we may consider a symbolical relation

W.P=C:K
to be valid among the defining equations of these tensors, (4], [12]. Actually,
some theorems for Riemannian spaces of C=0 have been generalized to for

Kzhlerian spaces of K=0, [4], [56], [10]. Thus K would be preserved by ¢ of
property x.
On the other hand, let S” be the unit sphere in the Euclidean (#+1)-space

g»tLIf we denote by @ the central (or stereographic) projection from S” to an

E" (selected suitably), @ is a projective (or conformal) map. Hence, for any
proiective (or conformal) local transformation ¢ in E”, @_10;350(5 is projective (or
conformal) on S

The complex projective space CP" is one of typical examples of Kdhlerian spaces,
and 1s a quotient space of gem+1 by a certain equivalence relation, [1]. Making

2m+ 1

use of the central (or stereographic) projection @ of St 4o E , an equival-

ence relation can be introduced in E“**' and the induced map @ is defined so
that the commutativity holds in the diagramm:

O

! , |

CP=§"*1/ - Eim_pimil/

For the central projection ®, we may expect @ to be H-projective. & would have

the property x for the stereographic @.

The purpose of this paper is mainly to discuss on @ for the stereographic
projection @. x is not fixed yet in this paper and still remains as a question.

Throughout the paper we shall agree with the following conventions.

(I) The ranges of indices.
A, B, C, ==-=1, -, 2m+2,
a, b' C, --.:]_' cee, m—[—]_'
2’ ﬂl Y, "'=1: see . I,
j’ k, k’ --.:1’ e M, 1*’ oee, m*.

(I A=m+1, A*=2m+2.
() Indices with .
For real coordinates— say {YA}, Yﬂ*=Ya+(m+1),

For complex coordinates—say {zz} ,
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* . A
z =z (complex conjugate), {z'}=1{z", 2'}.
(') The summation convention. For examples,
YAYA“—“YIYI-I-"'+Y2m+2Y2m+2’
zzdz”:zldzl*-l-----l—zmdzm*,
w0 Y A= Y 1 oeebg, Y1,

§ 1. The canonical metric of CP™. Consider the Euclidean space E™*2 of

2, m=1, and we denote by (Y a fixed orthogonal coordinate
* associated

dimension 2w
system of origin O. Let {w”} be the complex coordinate system in E™™

to (V4 :

'

w®=Y"+i¥".
™ *1 means the unit hypersphere of center O defined by
YAvA=u's® =1.
Let (w®) and (w’®) be points on $+1 f there exists a 6 such that
(1.1) w’a=e£6wa, 0<0<2r,

then we shall say (w“) to be equivalent to (w’®), and represent it by (w®)~(w’?).
As this relation ~ clearly satisfies the three conditions of equivalence relation,

Szm+1 is classified into the set
CP"=5"+1/~

of the equivalence classes. CP” is called the complex projective space. It isan

(complex-) dimensional complex manifold with the natural structure. In fact,

the natural local coordinates {V,, z#, &=1, -, m+1, of CP™ is introduced as

follows: For each b, U, and V, denote the sets given by
U,= e  |u'#0}, V,=Uy/~,

and let {zbz} on V,

A
AW -
zb —'_'-E-_' A'—l’ "-’ b-lj
w
A1
A w _
zb m—— " b » Z_bl .." ml
w

We shall consider a geometrical meaning of (1.1). In terms of V4, (L1 is

written as
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(1.2) y’aj——yalms G—ya* sin 0,

’

9% =9%" cosf+3" sin®.
Let ¥ and ¥ be the vectors in £+ defined by

a a*
Y=(J;*), 17=]Y=( - )
¥y ¥

Here, / means the natural almost complex structure in E“™2 i e. the matrix

(Om‘fm)
J= I 0/
m m

O, and I being the zero and the unit matrix respectively. As the vector Y at

(YA) on S+ is regarded as the unit normal vector to $*™*1 at the point, ¥ is
tangent to s+l ot (YA). The set of ¥ at each point (YA) on Szm+1 constitutes
a vector field ¥ over S**', and it is known that ¥ is a unit Killing vector in
S"*+1 with the natural structure of a space of constant curvature. ¥ is called a
Sasakian structure on S“**1. The equation (1.2) is written as

Y’=Ycos 6-+¥sinb.

Thus, the equivalence class of a point Y is a great circle which is an integral
curve of the Sasakian structure ¥ because of

(G5 o=

It is known that S™**' is a fibre bundle over CP™ with fibre S*, called Hopf
fibering.

=Y.

Henceforward, our discussions will be done only in
52N A _ -
UA"' {(w )|w"~ 20} and VA _UA/ .
The canonical (Kdhler) metric of CP™ is defined in ¥V A by

(1.3) dszz=—f24;-(f2dzldzz*— \zz*dzzl 2).
where
A
A=Y
wﬁ
(1.4) f=+1+u , u=zeée*

The metric (1.3) is written in the form
ds,’=g,,d7 dd"=2g, .dd'd?"
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with £2,=&,=0 and
1 , o *
EAu*= f4 (f b‘lu—le Z”)-

2*

(gjh) is given by gM:g ¥'=0 and
g =F0 1ﬂ+z'12“ .

The Christoffel symbols I” J.h , are all zero except

A A ¥ A u*
L) T, u=——1~,1—2—(a#z” +0°2%)

and their complex conjugates.

| ' g | h :
The non-vanishing components of the curvature tensor R jy are ones which

foliow by the algebraic identities about R i from

| _ A
R —~ (g, 08

ot Jo*)

and their complex conjugates, (12].

It is CP™ with this metric what we shall denote by CP” in the rest of this
paper. CP™ is a space of constant holomorphic curvature.

§2. The ecentral projection @. Denoting the north pole of gém+1 by ( y‘g) :

A
y§=1, ¥, =0, A#A,
we consider the tangent hyperplane

gl YA =1

of S+ 4t (y‘g). Let

D - S2m+1_Sim E2m+1

L o4 1
be the central projection, where Sim denotes the equator YA =0 on S,

Consider a point PeCP”, If PV A the equivalence class P contains a point

P( yA)ESz""er1 such that yA #0. As the equation of line OP is

YA=tyA, ! : real,
the coordinates of @(P) are

A_ y“_1
yA
If P’(»“*) be a point equivalent to P, the coordinates of @(P’) are wi=y* /D

which are written by virtue of (1.2) as

U
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wh= ( ylcos G—yl*sin 6)/3?m ,
yAX A . A% A
(2.1) w  =(y sin@+y cos0)/y’",

2 =P sin 6+ cos 0)/y2

2 1
n E“”" where

A =pb cos - yé** sin 0.

Since @ is the central projection and P is a great circle of Szm"'l, the equation

(2.1) represents a line on E“™! with parameter 8. On the other hand, it is

evident geometrically that different two points of V A 80 to two non-intersecting

2m+1

lines on &, ,;. Thus @ induces a map from V A 1nto E /~, where ~ means

the equivalence relation induced by @.
Next we shall consider

(2.2) E A" =
on E2m+1, and find the point (denoted by ®(P)) at where the line (2.1) meets

with Egm.
At the point, we have from (2.1) and (2.2)
yé‘ sin @-I—yé‘* cos 6=0.
Substituting these values of € into (2.1), we can get

,2_ A * A%
W =a(yPy" + 3% ),
(2'3) A* A ¥* A* A
u’ :a(y Y —y Y ):
where
(2. 4) 1/a=(y& )2+ (yA* )2=wt‘ w?”.
Thus we obtain a map
= 2m
D : VA —sF

which brings P to d(P) given by (2.3).
We shall represent @ in terms of local coordinates

(2.5) z"t—rw& in VA
W

and the complex coordinate in E™ given by

(2.6) a;{:u’l—l—z'u’l*

Do . : 2 %
which is the restriction of {#°} in E™ °to E™™.

Sﬁbstituting (2.3) into (2.6) and taking account of (2.4) and (2.5), we obtain

o* =z*. Hence we know that & is given by
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ZZ——*a2=ZZ

and consequently @ is 1-1 holomorphic.

® will be called the central projection of CP™ to E“™,
Now consider the canonical (Kdhler) metric

dsa2=2da1da2*
on Ezm, then the induced metric on V A by @ is

@7 B*(ds )=2dz'd".

The Christoffel symbols 5*(11 ;lu) of (2.7) being all zero, we have

- ’2 _ 2. ]_ y* 2 *
BT, )=T, 402" +52"
by taking account of (1.5). Consequently, @ is an H-projective transformation.

§3. The stereographic projection ¥. Let Pl(yf) be the south pole of gem+l

given by
A

ylA =—1, J’l =0: A#A-

Consider the stereographir grojection
. 2mtl 2m+1

R R N

where
For a point P(y*)#P,, the line PP is given by

Y=yl +1(y" -y,  ¢:real

or equivalently
y4= z’yA, AZ=A,

YA =—1440y2 +1).
Therefore the value of 7 is

= Al
= +1
at the point ¥'(P), the intersecting point of line PP with E2m+1.

Thus the coordinates of ¥'(P) on E2m+1 arc

wt=y%/( " +1), AF#A.
For a point P’( y’A) equivalent to P, ¥ (P’) has coordinates
wi=y /(P r), A=A
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and hence taking account of (1.2) |
u= ,B(yzcos 0 — y)f-*sin @)
(8.1) w* = B( yj'* cos 04 jrz sin )
el =B( yb‘* COS 6+yA sm &)
where |

(3.2) 713 my’ﬁ‘+1ﬁyﬁ coslﬁ:—-yﬁi sin 6+1.

As ¥ is a conformal map, the class P of P is mapped by ¥ to a circle or a
line given by (8.1).
Denoting ' o
E™:,  yAN =,
we shall find the intersecting points of (3.1) with E*”. At the points 0 takes
the values such that

(3.3) - 92" cos 64-92 sin 6=0,
and hence we have
(3. 4) t éosﬁ=iy£‘/\/*(yﬁ )2+(yﬁ* )2—-=iyl_3/\/wA Wb

if Pisin V X
In the following we shall adopt + sign in (3.4) and denote by #(P) the point

corresponding to that value of 0.
The coordinates of T (P) are

JAF | A¥* * A
W =r(y%y" -2 ")

by (3.1), (38.2), (3.3) and (3.4), where
(3.6) r=1/Cwd wb* + wl w2
Next we shall represent ¥ in terms df local coordinates {z’?‘} in VA and
(3.7) a’1=u’2+z’u’z* |
in E“", Substituting (3.5) into (3.7) and taking account of
2 ¥

A,
AW Y Y

.*Z*
Ay ),

Wl yh AT
and (38.6), we can get |
(3.8) at=2z4/(f+1),
where f means the one in (1.4), i.e.,
=./1+u, nzzeze*.
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As we have

s gx
(3.9) oo = ';I_i : = i:’__z&.z&* ,
the equation (8.8) is solved for zl as
(3.10) ZZ='—1#_ jaae* o
It follows from (8.9)
(3.11) 1’| <1,
and hence we get a diffeomorphism
& Va —->Bzm

given by (3.8), where B" 1s. the domain in E™™ satisfying (3.11).
¥ will be called the sterebgmpkz’c projection of CP" to E™

S4. The induced metric. We shall calculate the induced metric of the canonical
(Kahler) metric |
ds az =2do’*dol

of E" by the stereographic projection

¥ =2/ FL1).

As we have

dﬂ.’zz 1 dzl'—_""" 1 5 zldf:

J+1 (f+1)
the induced metric is given by f‘
N r 2\ - 2 A 5 A%
(4.1) 2{71 (ds,” )= 7 15-2—-{&’_3 dz" —(df)?.

On the other hand, the metric dsz2 of CP” being (1.3), we have

2dz'dz" = f 2d322+ “}.2—2 |2

If we substitute the last equation into (4 1) and take accqunt of
if=( R
Izl*dzﬂ.l2_f2(df)2= . (zl*azk_':zldgl*f/%' .

then (4.1) reduces to the following -

Z*dzl‘%

2
(4.2) @'*(dsaz)-—- f zdszzﬁ‘*—:“““ —

.

1)

QCz%inl'i‘zzdzZ*)z.
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§5. The similarity and the inversion in CP™. Let ¢ be a similarity at the
origin 1n Ezm .
(5.1) O - al——a»a’z:cal,

where ¢ is a positive constant.
A similarity ¢ of CP™ at O(€ V) will be defined by
J=0~'ob.
If we take account of (8.9), (3.10), (5.1) and

~ U |
2 Y _ af O ot Y __

i__ 1 2 Am 2 ’
S el < 1—aae

¢ is given in terms of the local coordinate {z’.{} in V A @s follows @

2 % 2
(5' 2) Z’ —_— - "'Z s
(1—¢?) f+1+¢2

Next we shall induce a transformation of CP™ from an inversion in E*” by 7.
Consider an inversion ¢ in E“" with respect to a hypersphere of origin O, and

radius >0, @ is given by an equation of the form

Q: a)'-——-ra'l = 1a'2,

where 1 is a positive-valued function. As ¢ satisfies
@) (@ a*)=r,
we get by virtue of (3.9)
2 2
__r _r(f+1)
(5.3) 1= e -1
We shall define ¥ by i‘i=iﬁ'“1n5uw restricting the value of r to sufficiently

small and the domain of ¢ suitably. ¢ will be called an inversion of CP™ at O.
The expression of ¢ is found as follows. The equation (5.2) being still true for

a non-constant ¢, we have
A_ 24 A
T A=1f+1+12
If we substitute (5.3) into the last equation, it follows that
A or” A

e »

=7—1—-r4(f+1)
Putting e=—1/7°, we get for ¢

F4

4

(A=) f+1+4+c
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Comparing this equation with (5.2), we know that the similarity and the inversion
of CP" are given by an equation of the same form:

A 2(; A
(5- 4) : Z’ — ] VA C#O-
(1—cDf 41+

§ 6. F-transformation. Let C” be the m dimensional complex number space
with coordinate {zp‘}. The Fubini metric is defined by

2 A * A% A *
(6.1) ds,”=2g, .7 dZ' =—§1§(Sﬁzﬂ-—2kz dz dz"

2 A, 4k 2x_2
=3 dz"dz" — Sflz dz" ",

where
S=S(u)=1+2ku, u=zz,
aod % is a non-zero real constant.

Let F” be the maximal domain of C” in where S is positive, and we shall call
(F", ds} a Fubini space which will be denoted by F™.

F" is a Kidhler space of constant holomorphic curvature.
Our purpose of this section is to generalize the discussions in §4 and §5 to F .

Consider a transformation ¢ of " such that
(6.2) 62—t =t(w)7,
where ¢ is a real-valued differentiable function of #=2%z".

It is known [8] that any geodesic through the origin O in F" is given by
(1) for >0,
2'=AMan (JVE ),

where A are complex numbers satisfying ok AYA* =1,

(ii)  for k<0,
Z*= A*tanh(V/TET 5),
where A are complex numbers satis{ying op AN = —1.

Thus @ leaves invariant each geodesic through O, and hence it is a geodesic
transformation at O in the sense of [7].

First we shall get the relation between c:isﬂ2 and gb*(dsif). If we put
v=uw'w" =tu,
it holds that

2_ 2 Ay AF 4k . 2,2
ds, S0 dw'"dw” Sz(v) lw” dw”|".




194 Shun-ich: Tachibana

Hence, taking account of
dw'=t2'dutt d',  t'=dt/du,
dwldwl*:z"(t’u—l—t)duz—l—tzdzldz "
wZ*de:z‘(t’a du-t zZ*dzZ),
| wl*dwx I 2= {Fu(t’ut+1) dz¢2+t2 | 2 dz I2} ,
we have

(6.3) gé*(dsw2) = S? =1 {t’(t’u—l—z‘)duz—l—tzdzzdzz*}
ARt

X0

On the other hand, it follows from (6.1) that

2dz1dz’1*:S(u)ds 2—[— 4k Iz?“*dzzlz.
2 S(u)

Thus, i1f we substitute the last equation into (6.3), the following equation is
obtained:

2 2
(6. 4 ‘(s H="L3 g5 2 ’
) ¢ (ds,") S(v) *° S(#)S“(v) ®

(u(Pu+)du+1 24 dz 3.

where

(6. 5) @ =(1+2ku(t’ (P u+1)du’+2kt°(1—1°) | 2V d2*|°
=(1+2B) (Fu+1) (X dd -2 d )’
+2{201+2B0)8 (Fu+1) + EE(1— 1D} | 24 d2*)%
Now we shall call a transformation ¢ of (6.2) an F-transformation, if {(u)

satisfies

) ==y T

where ¢ is a non-zero real constant and

f=+/S(u)=n/11+2ku, u=22%". ,
This transformation is a generalization of the similarity and the inversion of
CP".

For an F-transformation ¢, the coefficient of 12°d2*1? in (6. 5) vanishes iden-
tically. In fact, it is proved as follows. If we put

o=0(w)=(1—cf+1+c

then

and
(6.6) o 1-E=20 - A+A U~ DA+ R} /0
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hold good. As we have

F=klf,  0=1-cf=kQA~/f,
it follows that
¢ =—2kc(1—c)/0°f,
6.7) Futt=2{(1—c>) (1+Ew)+Q+Df /0%,
By (6.6) and (6.7) we can get

2142kt (Fu4-2)+ k1~ 1) =0,
which implies our assertion.
Thus we know that @ 1n (6.4) reduces to

@=1+2k)¢ (Fu+1)(Z* dd—2'd)?
for any F-transformation.

§7. The converse problem. Consider a transformation ¢ in F”— {0} given by
(6.2), i.e.,
Q. z‘z———-:'wl:t(u)zz.
We assume that ¢ satisfies

2
gé*(dswz )=- tS“DESS&) -dszz+ a(zz*dzx—zldzf)z

identically, where ¢ is a real-valued function.

The purpose of this section is to prove that the ¢ is an F-transformation.
Under the assumption, the problem is reduced to solving the differential equation
for t:

(7.1 N 1+28) (Fu+1)+EhE(1—12)=0
by virtue of (6.4) and (6.5). |
If we put

x=/1+2ku, y=1/¢,
then (7.1) becomes the following equation:
(7.2) {(xz— 1) p— 2xy}p+y2—- 1=0, p=dy/dx.

Differentiating (7.2) with respect to x, we have

{G&*—1) p—xy) g‘f. =0

and hence
: dap _ e P x
(1) e =0  or _I:::(\_n) T o

Case (i). It follows that y=Cx-+D, where C and D are constant. 'Substituting
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this form of y into (7.2) we get D*=C? +1 and

y=Cx-£C2+1.
Therefore if we put

c=-—Ci\/Cz—I—lt.

we can get
2¢

(l—cz)x 14-¢°
which shows that ¢ under consideration is an F-transformation.
Case (i1). By integration, we have

(7.3) log|y| = %log 1 x2—1]+C.

=

If 2>0, (7.3) gives y=C«/ xz—f which and (7.2) lead us to a contradiction
C°+1=0. If £<0, we have y=C\/ l—xz, and by (7.2) C=4:1 follows. Therefore

we have

f=+1/N1—22=+1/r/— Ok

Consequently it follows that

wlw'l* = tzzzzz* =—1/2F

which is contradictory to the diffeomorphism of ¢.

REMARK. In Ezm, let ¢ : z’l—er:t(u)zl be a (local or global) diffeomorphism.

Then it is easy to see that ¢ satisfies
¢ (ds,)=pds,*+o(X dd" - 'a")
if and only if ¢ is a similarity or an inversion with or without composition of

the symmetry at O, where ¢ and ¢ are real-valued functions of {z”} . In this case,
¢ actually vanishes.

Ochanomizu University,
Tokyo, Japan
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