
Kyungpook Math. ]. 
Volume 12, Number 2 
December, 1972 

ON ANAPPLICATION OF THE STEREOGRAPHIC 

PROJECTION TO CP'" 

By Shun-ichi Tachibana 

~ O. Introduction. Let M n (resp. M ,n) be a Riemannian space of metric g (resp. 

g') and rþ a diffeomorphism . from M n to M까. If ø maps any geodesic in M n to a 

geodesic in M ,n, it is called projective. The projective curvature tensor W is 
preserved by any projective map rþ, i. e. we have W=함(W'). For a diffeomor­

phism ø if there exists a scalar function u such that rþ*(g')=e20 g , we call rþ 

conformal. The conformal curvature tensor C is preserved by any conformalmap. 
X Let K

n 
be a K홉hlerian space and r" ̂ " Christoffel symbols with respect to a local 

μ u 

coordinate {.상J. A curve c in K n is called a holomorphically planar (or H-plane) 
À. À. curve if c is represented as z^=z^(t) and satisfy 

diμ dzlJ - … di 
__ ~ ___ y .s ". 

‘’ J. • 1.L -~~.I.' 

dt 

where α is a complex-valued function of t, [9] , [11]. 

Consider a diffeomorphism rþ of K n to another K까. An H냉fOjectz·ue m@ is a 

diffeomorphism which maps any H-plane curve to an H-plane curve. A holomorphic 

ø is H-projective if and only if there exists a self-adjoint vector PÀ. such that 

* ’À., ~ À.. ~À.. ~À. ø (r μ )=rμ u+Pμδu+PJμ’ 
where r μ~ u mean the Christoffel symbols of K ’”· 

We have known a lot of theorems about H-projective maps which correspond 

to ones of projective maps, [9] , [11]. Especially, corresponding to W , the H­

projective curvature tensor P has been shown as an invariant under H-projective 

maps, [11]. 

Now it would be natural to ask for a diffeomorphism ø of K n to K
,n having 

the property x such that 

projective: H-projective=confonnal: x. 
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It seems that the Bochner curvature tensor K of Kngives support to the existence 

of x. Because we may consider a symbolical relation 

W: P=C: K 

to be valid among thc defining equations of these tensors, [4]. [12]. Actually, 

some theorems for Riemannian spaces of C=O have been generalized to for 
Kählerian spaces of K = 0, [4]. [5]. [10]. Thus K would be preserved by rþ of 

property x. 

On the other hand, let Sn be the unit sphere in the Euclidean (n+ l)-space 

En+l. rf we denote by φ the central (or stereographic) projection from Sn to an 

E n (selected suitably), φ is a projective (or conformal) map. Hence, for any 

proiective (or conformal) local transformation rþ in En, φ-lorþ。φ is projective (or 

conformal) on Sn. 

The complex projective space Cpm is one of typical examples of Kählerian spaces, 

and is a quotient space of S2m+ 1 by a certain equivalence relation, [1]. Making 
~m+ 1 L_ 7:'2m+ 1 use of the central (or stereographic) projection φ of r to E , an equiva1-

ence relation can be introduced in E
2m+ 1 and the induced map ø is defined so 

that the commutativity holds in the diagramm: 

s2m+1 φ 

• E2m+l 

cF"‘=S2찌+1/，..，.. 
@ 

• ~m=E2m+1;'_ •• 

For the central projection φ， we may expect 정 to be H-projective. ø would have 

the property x for the stereographic φ. 

The purpose of this paper is mainly to discuss on δ for the stereographic 
projection φ'. x is not fixed yet in this paper and still remains as a question. 

Throughout the paper we shall agree with the following conventions. 

( 1) The ranges of indices. 

A, B, C, …=1, …, 2m+2, 
a, b, c, …=1, …, m+1, 
λ， μ， )), … =1, ---, m, 
j , k, k, … =1, …, m, 1%, …, n션. 

(1I) A=m+1. A*=2m+2. 
(ill) lndices with *. 

For real coordinates say{yA}. ya* =ya+Cm+1), 

For complex coordinates say {상}. 
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ZT =강 (complex conjugate), {i} = {상， 강}. 
(lV) The summation convention. For examples, 

,ATrA T, lTTl. I T,..2m -t- 2T ,.2m+ Y~Y~ = Y.Y. + ... + y<<m -t- <<y"''''-t- "', 

X X‘ 1 , 1" 껴η z^dz" =z.dz.+…+zmdz , 

UÀ.Y À. =U1Yl+ "'+umym. 

~ 1. The canonical rnetric of Cpm. Consider the Euclidean space E2m+2 of 

dimension 2111+2, m는1， and we denote by {yA} a fixed orthogonal coordinate 

system of origin O. Let {w
a
} be the complex coordinate system in E2m+2 associated 

to . {yA} : 

wa=ya+iya‘. 
2m+l means the unit hypersphere of center 0 defined by 

•• ,’ ”용 
y~y~=w“w“ =1. 

Let (wa) and (w,a) be points on S2m+ 1. If there exists a e such that 

(1.1) 
.Il i(} a w' .. =e μ， ’ O드8드2π， 

then we shalI say (w
a

) to be equivalent to (w,a), and represent it by (Wa)_(Wι). 

As this relation - clearly satisfies the three conditions of equivalence relation, 
S2m+l is classified into the set 

Cpm=S2m+lj _ 

m of the equivalence cIasses. CP'" is calIed the complex projective space. It is an m 

(complex-) dimensional complex manifold with the natural structure. In fact, 

the natural local coordinates {Vb' ZbÀ.} , b=l, …, m+ 1, of Cp
m 

is introduced as 

folIows: For each b, Ub and V b denote the sets given by 

U b= {(wo)εS2m+lJwb:;i: O}， Vb=U/-. 

and let 
1 
r j 

‘ J 
A 

L u 
, . { 

on V b 

z λ= μ，À. 
-b - b ’ 
μ， 

À=I, "', b-l, 

À. w À+1 
Z. = . 

b b ’ 
w 

À.=b, …, m. 

We shall consider a geometrical meaning of (1. 1). In tel'ms of {yA} , (1. 1) is 

wrítten as 
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(1.2) y’ a=ya cos 6--ya률 sine. 

y’a‘ =ya‘ cos e+ya sin e. 
2m+2 Let Y and Y be the vectors in E~"'T~ defined by 

a 

y=(y ‘ l 
a~ 

y 
Y=jY= 

a ’ -y 
• o 

j ’ 

Here. j means the natural almost complex structure in E2m+2. 

o -1 
m m 

i. e. the matrix 

= r 
J 

I 
m 

O ’ 

”’ 
Om and I* being the zero and the unit matrix respective1y. As the vector Y at 

CyA) on S2m+ 1 is regarded as the unit normal vector to SZm+ 1 at the point, Y is 
2m+ 1 . /T 7"A,"" . _ l' '''7. 1 •• ........ ,.A.... .....2m+ 1 tangent to S""'T L at (yL1

). The set of Y at each point (yL1
) on S"71O

T" constitutes 
~ _____ ,,2m+1 

a vector field Y over S~"'T". and it is known that Y is a unit Killing vector in 

S2m+ 1 with the natural structure of a space of constant curvature. Y is called a 
2m+1 Sasak.ian structure on S~"'T L. The equation (1. 2) is written as 

yr=Ycos 6+fsin6. 

Thus. the equivalence class of a point (yA) is a great circle which is an integral 
curve of the Sasakian stn1Ctut-e f because of 

dY' \ ~ 
공e JO=O-L 

It is known that S2m+ 1 is a fibre bundle over Cpm with fibre Sl." called Hopf 

fibering. 

Henceforward. our discussions w i11 be done only in 

U. ={(wa)lwÔ~O} and V. =U./'"'-'. ô ~ ô 

(1.3) 

(K늄hler) metric of Cpm is defined in V ô by 

2 꺼 .,.,.2 .. À ... À.‘ , À.‘ -λ 

The canonical 

where 

상=꼭， 
w 

(1.4) f=.../l+u • e ε’‘ 
μ =z z • 

The metric (1.3) is written in the form 

dSz2=gjhdZjdzh=2gxu‘dldzμ· 
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with g J..p. = gJ..*μ*=0 and 

gJ..μ융=윷([2δxμ-상‘zμ). 
Aμ λ‘u‘ (gJ") is given by g μ=g μ =0 and 

gRμ‘=r(δaμ+zl양). 

The Christoffel symbols r / I are all zero except 

(1.5) 
J.. 1 / ~J.. 1)*, ",J.. p.* 

Tμ u=-fE(κz +킨Zμ ) 
and their complex conjugates. 

The non-vanishing components of the curvature tensor 함I are ones which 

follow by the algebraic identities about R
h 

jkl from 

R"J..μu야=-(δ삶w*+영gμ앙) 
and their complex conjugates, [12] • 

It is Cpm with this metric what we shall denote by Cpm in the rest of this 

paper. Cpm is a space of constant holomorphic cuπature. 

~2. The centraI projection @. 2m+l Denoting the north pole of Swm ," by (Y~) : 

f:l 1 A 
y。 =1, y。 =0, A낯tJ.. 

we consider the tangent hyperplane 
.2m+l • Y'-' =1 

of S2"써 

T'2m+l 
+ /"f. 

be the central projection, where S씀 denotes the equator YA =o on s2m+1. 

Consider a point Pεcpm. If PεVf:l ’ the equiva1ence c1ass P contains a point 

p(yA)εS2m+ 1 such that yf:l;i:α As the equation of line OP is 
A • A 

Y~=tyn， t: real, 

the coordinates of φ(P) are 

aA- yA 
----,.--A y 

If P ’ (y’A) be a point equivalent to P , the coordinates of φ(P') are u ,A=y,A /y ,f:l 

which are written by virtue of (1. 2) aS 
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(2.1) 

,.,,2m+ 1 on ι , where 
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,À __ ,.. _.À λ‘ x =(y cos6-y sin6)/yyA 
,À" λ * 1"\'- I ,A 

μ =(y'" sin tJ+y'" cos tJ)/y’Ll ’ 

μ，/).‘ =(Y"'sin tJ+y/)." cos tJ)/y’A 

y,ð =l" cos tJ-yð싸 sin tJ. 

Since φ is the central projection and P is a great circle of S2m+1. the equation 

(2. 1) represents a line on E2m+ 1 with parameter tJ. On the other hand. it is 
evident geometrically that different two points of V /). go to two non-intersecting 

2m+1 
lines on E2m+1. Thus φ induces a map from V /). into E

W

"" ï ..... where ...... means 

the equivalence relation induced by φ. 

Next we shall consider 

(2.2) E2m : y/)." =0 

on E2m+1, and find the point (denoted by @(F)) at where 

with E
2’”. 

At the point. we have from (2. 1) and (2.2) 

yð sin tJ+yð" cos tJ =O. 

Substituting these values of tJ into (2. 1), we can get 

,À _ • .t' .. ð. •• Ã. I .,ð." λ*、=α(y'-' y" + y'-' y" ) 
서흩 ð...,À‘ ð..* .. À、=α(yß-y" _yLl y'") 

(2.3) 

where 

(2.4) 1/α=(l" i+(y
ð..* i=μ，ð.. wð". 

Thus we obtain a map 
φ : VA-• E2m 

which brings P to (Þ(P) given by (2.3). 

We Shan represent @ in terms of loca1 coordinates 
A 

(2.5) zÀ= 갱^ in V /). 
μ，-

and the complex coordinate in E2m given by 

(2.6) 
Ã. .À".À‘ α =μ’ 十 zu

which is the restriction of {%a} in E2m+ 2 to E2m. 

the line (2. 1) meets 

Substituting (2.3) into (2.6) and taking account of (2.4) and (2.5). we obtain 
À. À TT 

________ 
1 
______ 

..... 1- _L ~ α = z". Hence we know that φ is given by 
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x z À. À. +a =z 
and consequently @ is 1-1 ho1omorphic. 

ø will be called the central þrojection of Cpm to Ji2m. 

Now consider the canonical (K홉hler) metric 
À..À.‘ dsa =2dα da 

on E2m, then the induced metricon V A by 행 is 

(2.7) ø‘(dsa2)=2didz깐. 
The Christoffel 양I뼈s φ‘(r: À.) of (2.7) b뺑 all zero, we have 

189 

by taking account of (1.5). Consequently, φ is an H -projective transformation. 

!:i 3. The 8tereographic projection 합. μt Pl(Yt) be the south pole of S2m+1 

given by 

y? =-1, 

Consider the stereographic: ;lrojection 

1JT: ~m+l_ {P
1
} 

where 
E2m+1 : 

yF=o, 

r.2m+l 
+f1. 

yA =0. 

For a point p (yA) =;6Pl' the line P 1P is given by 

A낯A. 

yA=y?+t(yA- yf), t : rea] , 

or equivalently 
A . A 

y~=낀 , A=;6,tl , 

y"'=-l+t(y"'+ l). 

Therefore the value of t is 

t=. ， 프 
yU+1 

2m+l at the point ψ(P)， the intersecting point of line P 1P with E 

2m+1 Thus the coordinates of 1JT(P) on E'-"'"P are 

μA=yAj(y'" +1), A =;6,tl. 
n ~ 

For a point P'(y''') equivalent to P. 1þ’ (P') has coordinates 

x’A=y’A j( y ,f::,. + 1) , A=;6,tl 
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and hence taking account of (1. 2) 
,Ã. ,." __ Ã. u =β(y"cos O-y~sin 0) 

μ’깐=ß(녔‘<:08 O+yÃ. sin 0) 

μ’A‘ =β(ll‘ COSO+yA sinO) 

(3.1) 

where 

(3.2) 움 =y’""+1 매"'cosO'--yA* sinO+l. 

As ψ· is a conformal map, the c1ass P of P is Inapped by ￠ to a circIe or a 
1ine given by (3. 1). 

Denoting 
E2m: yA* =0. 

we shall find the intersecting points of (3. 1) with ~m. At the points 0 takcs 
the values such that 

(3.3) 

and hence we have 

y6.* cos O+y'" sin 0=0, 

4 
V ·m 

찌
 ·$ 

떠
 ~P ”n 

Cos 6= ±yA 씨(Y8 i + (/'!.* )2= :!:y8;J강강r 

In the following we shall adopt +. sign in (3.4) and denote by 합(P) the point 
corresponding to that value of O. 

The coordinates of 함(P) are 
셔 '" .. À., •• 8 * .. À.* μ =r(ylly" + yll f) , 

셔‘ / A X‘ A‘ 2 =r(y" y" - y" y") 

(3.3) and (3.4), where 

(3.5) 

by (3.1), 

(3.6) 

(3.2). 

r= 1/(w6. w"，융 +,J ψ8 wð‘ ). 

Next we shall represent 합 in terms of local coordinatcs {z상 in VA and 

(3.7) 
Ã. ，λ .. ，칸 
a=μ 十tμ

in E2m
• Substituting (3.5) into (3.7) and taking account of 

x 
Zì,=. w 

A 
μl 

À. •• À.‘ 
- y"+ ’ Y 

κ A* 

y“ +iy'" 

and (3. 6), we can get 

(3.8) αÀ. =zÀ.IC!+ 1). 

때
 -4 

’
’
ι
 --,‘ 

/
‘
、/ 

·m 

= 
m 

p
ν
 

m 
짧
 

m tlt m e 
，
때
 

1. e. , 
E .. E‘ u=z.z • 
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As we have 

(3.9) -λalA‘_ -"----1-----=-1 
“ μ - 1+1 ’ 

---* a 
-
α
 

a 
-sa 

+-­-i 

--i --”rJ 

the equation (3.8) is solved for i as 

(3.10) 상=------휴←r상 
1-α‘αC‘ 

It follows from (3.9) 

.(À.‘ (3.11) I a^a^-I <1. 
and hence we get a diffeomorphism 

iìf: V.ò.-• If>>' 
given by (3.8). where ~m is the domain in E2m satisfying (3.11). 

ifr will be called the stereographic þrojection of CP1n to Ifm. 

~ 4. The induced metric. We shall calculate the induced metric of the canonical 

(K갑hler) metric 
2 λ λ‘ dsa =2dα dα 

of E2m by the stereographic projection 
슐 • λ .( .. À. ; z • a"=z"/(f+l). 

As we have 

da.(= J" ~ • dzÀ.­F十1

the induced metric is given by 

L「rz2df-
(f+1)ι r 

(4.1) ~ ... */ .. 2 、 2 frl~λJ_간 rJ"、2

On the other hand, the metric dSz 2 of Cpm being (1. 3), we have 

2d상싫=/2dsz2+윷 Iz짧1 2 

If we substitute the last equation into (4. 1) and take ac띠unt of 
λ‘ il. . . À • .(용 

dl=(z" dz"+z"dz" )/2/ • 
.(* • .(.2 .2 , .~2 ., À.유 A λ X‘ 2 lz dz | -f (df) =」 (z az -z dz ) /4, 

then (4. 1) reduces to the following 
2 

(4.2) 함(dsa2)=「듀7dSz2i ; 1 ?(zX싫」zxdzx‘)2. 
([+-1)‘ 2/"(f+l)‘ 

" .. 



192 Shμn-ichi Tachibana 

~ 5. The simiIarity and the inversion in Cpm. Let rþ be a similarity at the 

origin in E2m : 

(5.1) rþ: αX. ..l. λ 
，α =cα , 

where c is a positive constant. 

A similarity ø of Cpm at O(ε V l\) will be defined by 

ø=합-lorþ。합. 

If we take account of (3.9), (3.10), (5. 1) and 

상포→ α냥→ α，À포:나x 
a À= , ~ _ zÀ, z'λ_ 2 _.'λ - 1+1' ’ ‘ = -:-I;---a"':'~t:-a-'-t-* a 

(þ is given in terms of the local coordinate {상J in V l\ as follows : 

z'À= __ ~>> 강 n 상. 
(1 -cW)I+l+c‘ 

(5.2) 

Next we shall induce a transformation of Cpm from an inversion in E싫 by 함. 
Consider an inversion ψ in E2m with respect to a hypersphere of origin 0α and 

radius r >0, ø is given by an equation of the form 
X λ A ø: a^ 'a’ =1aA 

where 1 is a positive-valued function. As 야 satisfies 
λ Ä.*, , ,u ,u (a^a^) (a'μa’μ )=r~， 

we get by virtue of (3. 9) 

γ，2 lU+I) 
(5.3) 1=-수. :t::수i느4-

αEαE’ 1-1 

We shall define 합 by 합=합-lo(þo1f!' restricting the value of r to sufficiently 

small and the domain of ø suitably. (þ will be caUed an inversion of Cpm at O. 
The expression of ø is found as follows. The equation (5.2) being still true for 

a non-constant c, we have 

z/2 와 상 -
- (1 -12)1+1+12 

If we substitute (5. 3) into the last equation, it f，이lows that 

z,.l.= 2r2 상 -
- l-l-r4(f+l) 

Putting c= -lIr2, we get for (þ 
심- 2c 상 

- (1-댄)I+l+c 2 
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Comparing this equation with (5.2), we know that the similarity and the inversion 

of Cpm are given by an equation of the same form: 
,Å_ 2c Å 

(5. 4) z ”= ? 9 Z”, c#α 
(1 -c<-)f+1+c' 

~ 6. F-transformation. Let C
m 

be the m dimensional complex 

with coordinate {iJ. The Fubini metric is defined by 

(6.1) 
2 _ .À. .u* 1 , ___ . À.‘ J .. 융 

( ’ “ ’ “ 흰(SÒÀ.μ -2kε 

2 .À.. À.* 4k λ흩 λ2 
= ~ dz"dz" - ~2 I z"dz" I ", 

where 

S=S(μ)=1+2kμ， 

aod k is a non-zero real constant. 

E~E’‘ μ =z-z , 

number space 

Let pm be the maximal domain of cm in where S is positive, and we shall call 

{.F"', dS
z

2
} a Fubini space which will be denoted by F m

• 

pm is a Kähler space of constant holomorphic curvature. 

our purpose of this section is to generalize the discussions in ~ 4 and ~ 5 to pm. 
Consider a transformation ø of F

m such that 
-' • _À. λ X (6.2) ø : z"-→w"=t(μ)z^， 

where t is a real-valued differentiable function of U=ZEZ한. 

It is known [8] that any geodesic through the origin 0 in pm is given by 

(i) for k>O, 
λ À. / /'1_ z"=A"tan (,y'k s) , 

where A À. are complex numbers satisfying 2kAÀ.AÀ. =1. 

(ii) for k <0, 
À. • À. 

Z"=A"tanh(‘ Ilkl s) , 
where A À. are complex numbers satisfying 2kAÀ.AÀ.=-1. 

Thus ø leaves invariant each geodesic through 0 , and hence it is a geodesic 

transformation at 0 in the sense of [7]. 
2 ..,* / or 2 

First we shall get the relation- between ds z"- and ø- (dsw
W

). If we put 

it holds that 

X λ‘ .2 v=w w =r μ 

2 2 J.~L7 .. .À.‘ =τr←dzu dzu -w .'‘- ‘ 

4k 
S2(ν) 

a용 À., 2 I w" dw" I W. 
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Hence, tak.ing account of 

we have 

(6.3) 

λ λ 
dw"=t’z"du+t dz", t' =dt/du, 

dμ，xdμ，t" =t'(t'μ+ t)di +idldl‘, 
X용 À. _.l.I".s' AI ,1..., I .J,. _A.‘ _À. μ，'" dμ，^=t(t'μ du+t ZÆ dz^) , 

'u’칸dμ/ ， 2=t2 {t'μ(t'u+t) du2+t2 ， z칸di ， 2}， 

￠‘(dsw2)= .C;으. \ . {t' (t’μ+t)du2+t2dldi‘} -S(ν) 

4kt2 2 2 λ* • À., 2 
--7-{tk(ti+t)dμ +t'" z^dz^ '''}. 

S"(v) 

On the other hand, it follows from (6. 1) that 

2dzxdzr=S(μ)ds. 2 + 객호-l zX*dzx | 2. 
S(μ) 

Thus, if we substitute the last equation into (6.3), the following equation is 
obtained: 

(6.4) - t2S(χ) ..3_ 2 
W(dsw2)--Frrds + ? S(v) _U

z ' S(U)S '2.(V) 

where 

(6.5) @=(1+2ku(t’(t'u+t)dμ2 +2kt2(1-h Iz싼dil 2 

=(1+2kμ)t'(t’u+t)(zÀ융dzx-zxdzX률)2 

+2 {2(1+2kμ)t'(t'μ+t) +kt2(1-h} I zÀ률dil 2• 
Now we shall call a transformation ø of (6.2) an F-transformation, if t(씨 

satisfies 

t(μ)= ~1τ꽃 ? (1 -c2)f+1+c2 

where c is a non-zero real constant and 

f=‘IS(u)= .v다젊강， μ=zSF. 

This transformation is a generalization of the similarity and the inversion of 
CPm. 

For an F -transformation ø. the coefficient of 1 i흩di 12 in (6. 5) vanishes iden­

tically. In fact, it is proved as follows. If we put 

then 

and 

(6.6) 

p=p(u) = (1 -c2)f十 l +c2, 

t= 2c -
p 

1-t2=2(1-안) {(1+c2)f+ (1 -c2)(1+싫)} /야 
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hold good. As we have 
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/'=k//. P’=(1-c2)f=k(1-c2)/f, 
it follows that 

(6.7) 

t ’ =-2kc(1-c2)/p% 

t ’u+t=2c{(1-c
2

) (1+kU)+(1 +c2)/}/l꺼 
By (6.6) and (6. 7) we can get 

2(1+2kμ)t'(t’μ+t) +kt2(1 -t2) =0. 

which implies our assertion. 

Thus we know that @ in (6.4) reduces to 

@=(1+2kμ)t’(t'u+t)(zÀ‘dl-idzÀ.‘i 
for any F-transfolmation. 

~7. 

(6.2). 

The converse problem. Consider a transformation ø in F'" - {O} given by 

1. e. , 

￠ : zl. λ X 
，ψ =t(u)z". 

W e assume that ø satisfies 

￠-(dSm2)=폈L&z2+U(상값-z앓)2 
identically. where 0" is a real-valued function. 

The purpose of this section is to prove that the ø is an F -transformation. 

Under the assumption. the problem is reduced to solving the differential equation 

for t: 

(7.1) 2(1 +2ku)t'(t'u+t) +kt2
(1 -h =0 

by virtue of (6.4) and (6.5). 

If we put 

J X=‘11+2kμ， y= l!t. 
then (7.1) becomesthe following equation: 

(7.2) {(i -1) p-2xy}p+i -1=0; 

Differentiating (7.2) with respect to x. we have 

{(상-l)p-쟁}뿌 =0 

P=dy/dx. 

and hence 

(i) 뽀=() dx -V or 
x 

젠
 

p-y 
찌
 

Case (i). 1t follows that y=Cx+D. where C and D are . constant •. Substituting 
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this form of y into (7.2) we get d=d'+l and 

y=CX:l:. ~C2갑. 
Therefore if we put 

c=-C±ι흡I ’ 
we can get 

t=----3G 
(1 -c2)x+1+c2 

which shows that ø under consideration is an F-transformation. 

Case (ii). By integration, we have 

(7.3) Iog Iy 1 =울log li-11+C. 

I 2 If k>O, (7.3) gives y=C새x~ -1 which and (7.2) Iead us to a contradiction 

C
2
+1=O. If k<O, we have y=C싸펴， and by (7.2) C= :I:. 1 foIIows. Therefore 

we have 

t= :l:. 1/ 1-강=:1:.1/ι3 
Consequently it follows that 

.:t ~‘ 2':U’ = rz"z". = -1/2k 

which is contradictory to the diffeomorphism of ø. 
λ X λ 

REMARK. In E~"'. Iet ø : z^-→w^=t(μ)z" be a CIocal or gIobaI) diffeomorphism. 

Then it is easy to see that ø satisfies 

￠‘(dsw2)=pdSz2+u(zX‘dzx-zxdzX흩i 

if and only if ø is a similarity or an inversion with or without composition of 

the symmetry at 0 , where p and 0" are real-valued functions of {i}. In this case. 

0" actualIy vanishes. 
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