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SEMIGROUPS ON THE DISK WITH THREAD BOUNDARIES
By E. E. DeVun

In an earlier work [5] commutative semigroups on the two-cell without zero
divisors whose boundary consisted of two usual unit intervals were determined. In
this note the semigroups with zero divisors are determined. Moreover, if S is a
commutative semigroup on the two-cell whose boundary consists of two threads
with E(S) (the set of idempotents of S)= {z,i} where z is the zero for S and 7 is
the identity for S, then a classification for S is obtained when the results here
arc combined with the results in [5]. Standard notation found in [7] will be used
here. In particular, we will let (I, *) be the usual unit interval, Also A% will
represent the topological closure of A.

1.1. DEFINITION. A commutative semigroup S is said to have property (3) if

(1) S is topologically a two-cell

(2) The boundary of S is the union of two threads

(3) S has zero divisors

(4) E(S)={z,7} where z is a zcro for S and 7 is an identity for S.

Since commutative semigroups on the two-cell without zero divisors and whose
boundary consists of two usual unit intervals have been determined in [5], we
shall concern ourselves only with semigroups with zero divisors. In section 1 we
exibit a method for construction semigroups with property (58); later in section 2
we show that these are the only examples.

1.2. Consider the collection #, #={M, (aj. bj): (=0, 1, 23 = j=1, 2
3, -} whose elements satisfy the following conditions:

(1) M; is a closed ideal of (Z, )X(Z, ") for i=0, 1, 2, 3, .

(2 ({0} x [0, 1DUC[0, 1] X {0}DSM,,.

(3 a,5,€ (0, 1) for j=1, 2, 3, -

() M,\M,CM, for i#j.

() If i=j, then M;,N (", 57 : 0<t<1}CM, for w>1 and
M@, 877 1 0=1<1) NMy=¢ for 0<w<1.
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1.3. LEMMA. If M, i=0, 1, 2, 3, « are closed ideals of (I, ')X(I,") such

that M'-nMjCMU for i#j], then 'Ejo M; is a closed ideal of (I, *)X(1, *). Moreover,
=

(=]
if {w,} 1s a sequence in .U( M, which converges to w and {w,} is nol eventually in
=0

any M, then we M,.

PROCF. Since the union of ideals is an ideal we need only show EU M, is closed.
We distinguish two cases.

Case 1. Let w,—w with {"’nic,gqu for some natural number m. If {w,) is
eventually in M ; for some j, then w,—~weEM i since M f is closed. If {w,} is not
eventually in M; for some j, then there exist subsequences lw;} CM; and [w:} CM,
for some j and k, k#j. Now w;—-wEMj and w:—-wEM w Hence weE M ,-I"IM &

CM;, andwe U M,
i=p
Case 2. Now suppose {w,} is contained in an infinite number of M;'s. Then

there exists a subsequence {w;} with each w; in a different M, Let w;:(xu. y,)
and w=(x,y). Since w,—w, x,—x and y,—y. We claim x,>x, ., implies y, <y,
since otherwise y,>y, .., and hence there exist x’:. y; such that (x,, y,,)-(x;,y,;)=
(%, 1%, ). Hence (x,..,%,.,)» (x,3)E M, for some &, and this isa contrad-
iction. Now there exists a subscquence of {x,} or {y,] which is decreasing, say
{x,] is decreasing and ¥ —x. Now (%,,¥,)=#,—w and there exist %,,7, such that
(R T )@ D=(Z, 1 Fpy1) (LF). Hence (2,502, 1, @, pFePLF )€
M. Now consider the sequence (%,, ¥,)(,, 1). Since ¥,%,=%,.,, and ¥ —% X, ,
—x, we have (%,,,,¥,)—(x,5). But (%, 7,)(%, 1) €M, implies (x,y) €M, and

(o]
we have wE ‘UU M,
i=

1.4. DEFINITION. Define a relation R(.#) on (I, )X, *) by (#,5) € R(.#) if
(1) 7=3

(2 #,5eM,

(3) 7,5 &€ M; and there exist a w with 0<w<1 such that 7 and § are contained

in the same component of (M;N {(a}",b; ") : 0<<t<1}).

1.5. LEMMA. The relation R(.#) is a closed congruence, and hence
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[(Z, )X, )]/R(A) is a semigroup.
PROOF. The proof follows directly from 1.3 and lemma 1 of [5].

1.6. DEFINITION. We say the collection .# defined in 1.2 is of

Class A if for M, .4, M;N(0.1] X {1}DU{1} X0, 1])=4.

Class B if for My€ 4, MN(IX{1})=[0,1/2] X {1} and M; € .4 implies
M;N({1} %(0,1])=¢.

Ciass C if for My 4, MyN(IX {1})U{1} X)) =([0,1/2] X 1HU {1} X [0,
1/2]),and M; € 4 implies = (M;N [(1/2,1] X {1}]) Na,(M,;N [{1} X(1/2,1)]) =.

Let .# be of class A, B, or Cand ¢: (I, )X, D= [, )X, *)]/R(A4) be the
natural map. It is easily seen that this map is monotone and no equivalence class
of R(.#) separates (I, *)X(l, ©). Employing a theorem of Whyburn [8] we sece
(L, )X, )]/R(.#) is a two cell. Since ([, )X ([, *) is commutative, we have
(I, )X, ")/ R(A) is commutative. Moreover, [(Z, )X, )]/R(.#) is a com-
mutative semigroup satisfying property (3). Thus we have the following:

1.7. THEOREM. If .# isa collection satisfying 1.2 and of Class A, B or C, then
(L, )X, )]/R(A) is a commutative semigroup with property (B). Furthermore,
if A is of Class A, the boundary of [(I, *)>(I, )/R(A&) is the union of two
usual unit intervals; if .# is of Class B, the boundary of [(I, )X (I, )]/R(.A&) is
the union of a usual unit interval and a nil lthread; if 4 is of Class C, then the
boundary of [(I, *)X(I, )1/R(.#) is the union of two nil threads.

Now we will show that the above semigroups are the only semigroups satisfying
property (A). Throughout S will be a commutative semigroup with property (A4).
We intend to construct a collection .# such that ((I, )X, )]/R(.#) is isco-

~morphic to S.

2.1. LEMMA (Hilderbrant [6]) If the boundary of S=UUV where U and V are
threads, then UNV = {z,i} and S=U-V.

Since U and V are threads with E(S)={z,7}, there exist homomorphisms f:
I, D—U and g: (I, )—V.

2.2. LEMMA. There exist a continuwous homomorphism h: (I, )X (I, *)—S which
is onto S.

PROOF. Define h: (I, )X (I, *)—S by h(x,y)=f(x)-g(y). Since S=U-V, his the
product of homomorphisms, and k& is continuous; k: (I, )X (I, )—S is a conti-
nuous homomornhism onto S,
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Moreover, the homomorphism k: (I, *)X(J, *)—S onto S can be chosen such
that

(a) if U and V are usual unit intervals then the restriction of k& to {1} X1 and
I {1} are iseomorphisms onto U and V respectively.

(b) if U is a usual unit interval and V is a nil thread, then & restricted to
I'x {1} is an iseomorphism onto U while 2 maps {1} X [0,1/2] onto z and is 1-1
restricted to {1} X [1/2,1].

(c) if U and V are nil threads, then & maps {1} % [0,1/2) and [0,1/2] X {1} to
z and is 1-1 restricted to {1} X [1/2,1] and [1/2,1] X {1}.

The homomorphism % will always be chosen this way.

Combining the results in (1], [3], and [5] it can be shown that for each s€S

' — 1--
~ {2} there exists a,b,&(0,1) and #,f,&€ [0,1] such that k™'(s)={(al, b, ): 4
Stgt;}. Since S has this property we will call S rooted.

2.3. NOTATION. Let J={s:s&S and h_l(s) is not a point}. Note J is an ideal
of 8.

2.4 DEFINITION. Let P be an idecal of S. We say P is positive if for p.p’ € P
— {2z} there exist s,s" €S such that ps=p's'#z.

2.5 LEMMA. If S is rooted and PCJ is a positive ideal, and p,p’ € P— (2} with
KD = (@ 8" 1 <t<t, t,#1), then there exists wE (0, <o) such that

B =@ 6"y £y, £i#6).

PROOF. We know there exist ¢.d € (0,1) such that h—l(p’)z {(c‘. dl"'): t;gt
gt;. t;%t:_,}. Now there exist s,s” € S such that sp=sp'#z and sp,s’p' €J. Let
h(x,y,)=s and h(xy9,)=5". For (x,3) € h"l(p)- (#,,3,) we have i(x,y)=ps, and
for (x',y") = (#')+ (x5 9,) we have h(x’, y)=p’s’. But lemma 1 [5] implies
B )y 9= 1@ 0 0,<0<0,, 0,7#0,} and AT () (xy 3) =1,
dr(l_")): n <n<n, nFn}. However, there exists m, ¢ €(0,1) such that h—l(sp)
=0 )= 1’ " h: A =A<A, A#A,). This implies a“=m=c" and b*=g
=d’, or c=a"" and d=0“". This completes the proof.

2.6. DEFINITION. Let P be a positive ideal of S with PCJ. If p&P— (z} with
R oD@ 0D t<w<i<t, t#t,), ifalso N is an ideal of (Z, )X (I, *) such
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that h~'(P- {z} )CN and NCk™'(P), then we define Com ((P,N);(d", 57"
to be the component of (NN {(d,5'™"): 0<t<1}) containing (a",5' ™).

2.7 LEMMA. If S is rooted and PC]J is a positive ideal and N is an ideal of
(I, Y, *) such that h™'(P—{z2})CNCh™ Y (P) and p& P—{z} with h™'(p)
={(d,0'™"): {<t<t, 71}, then k™ (p)=Com((P,N); (a",6'™")).

PROOF. Let k™' (p)={(d", 5" ™: 0,<9<q,, q,7#q,} CCom ((P, N); (a5,

If 27 (p)=Com((P, N); (@), we can assume without loss of generality
that there exists an y<g; such that for all # with y<¢<lg, we have h(d, bl_')EP

— {2} CJ - {z}. Hence for each /€[y, q,] there exist 8, and 7, such that h~(h(d,
BTN ={@ 8T B<w<r,. B#r}. Morcover for each s,.s,ES with 5,5,
KN (s =¢. Thus {h7'(s): s (h(d'.b'~): y<t<g)}} is an uncountable

collection of disjoint non-degenerate closed intervals contained in the interval ((d,
bl_r): 0=-"¢{=_1}. This is impossible. We conclude that h—I(p)=Oom((P, N); ",

bl_")),

2.8 LEMMA. Let S be rooled with PCJ a positive ideal, and N an ideal of (I, )
% (I, *) such that h~'(P— {2 )CNCh™ (P) and NNk~ (2) closed. Then (1,d)EN*
implies (1,¢) E N for all 0<c<d.

PROOF. Let (1,d) € N*, One seces immediately that {(x,y): 0=<x<1, 0= y<d!}
CN. Let p€ P—{z} and h™'(p)= ((d"8'™"): t;<t<t,, t,#t)}). For 0<c<d we

have (1,¢)=(1,4") for some w & (0, o). Hence there exists a g such that (@,

BT 0<t<q}CN. If h(@”,6" ") =2, hence k(1,¢)=z and thus (1,c) EN. Also
if 1@ 0" )=p € P~ {2} for some #' € (0.¢)., then h(@“,4*~")=p" for all
te(0,9). Thus k(1,e)=p' € P—{z} and (1,c¢) EN. For ¢=0, we have (Lc)EN
for 0<¢’<d, and N is an ide:. Thus (1,¢)=(1,0 & (1,0) - (1,¢’) E N.

Now we shall investigate the ideal J of S.

2,9 LEMMA. If s€ ], then sS=sU=sV [5].

2.10 DEFINITION. Let s&J, and define G,={s": such that s'SNsS# [z}, and
s"s€J1U{zl. Let ¥={G,: s€J}. Note s& ] implies sEG,.

2.11 LEMMA. If r,s,w €S and rUNsU# {2}, and sUNwU# (2}, then rUNul
#(2).
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PROOF. From above we have ml:suﬁéz. and sug=wu,7#z. Let u=min {uy u,).
Then su#z, and su € rUNwU.

2.12 LEMMA. If r,s,w € ], and rSNsS# (2}, and sSNwS# (2}, then rSNwS= |z} .

PROOF. From 2.9 we have that #S=»U, sS=sU, and wS=wU. Now apply the
previous lemma.

2.13 LEMMA. If G,.G,E Y and there exisis w#z such that wE G NG, then
G,=G,

PROOF. Let ¥ €G,. If #=z, then r G, If r#z then rSNrS#{z}. Also
wSN7rS= {z} and wSNsS# (z}. Applying 2.12 we sce that #’SNwS# {z}. Applying
2.12 again we get that »’SMsS# {z}. Hence rE€G, and G,CG,. By symmetry
we get G CG,. Thus G,=G,

2.14 LEMMA. If G,€ Y, then G, is an ideal of S.

PROOF. Suppose G,={z}. Then G is an ideal of S. Now suppose G # {z}. Let
w&G, and r €S. If rw=z, then by definition rw=z2€&€ G, If rws#z, then w#z,

hence wSMNsS# {z}. Also rw € rwSNwS# {z}. Thus by 2.12 we have rwSNsS# (z}.
Hence G, is an ideal of S.

Without much difficulty it can be shown the collection X' is countable. Also by
2.12 we see that for each G& Y- ({z]}, G is a positive ideal of S.

2.15 LEMMA. Let G be a positive ideal of S which is contained in J. Suppose
h(x,y)=z. If there exist n=G— (2} with h_l(n)= ((d, bl—'): LISt} and w>1,
rE(0.1], t"Eltuty) such that @ =z<a", 6~ =y<b'™", and if ¢=>w then for
all (z,5) € ™ (GN{@"6"™"): 0<t<1}) we have h(%, )=z

PROOF. Suppose h(%, ¥)#z. Then n, h(%, ) € G— {z). Hence there exist 5,5’ €S
— {2} such that ns=h(%, 3)s'#z. Now h '(ns)=h""(h(x, )-s)D{(",0"™™): =<t
<t tl;ﬁtz}. r=>g=>w. Morcover, there exists ¢{ € [f,#,] such that O<a"gx and
0<t "<y, hence (4 9) + (L )=(@" ") for some (& ) €U, Ix, ). But
2=h(x,y)  h(Z, $)=h(d", 5" ~")=ms. This is a contradiction. Hence h(%, ¥)=2z.

2.16 LEMMA. If GE Y and G# (2} and n € G— {2}, then there exists u & U~ {z}
such that nu=z, and there exists v&EV — {2z} such that nv—z. Moreover u and v can
be chosen to be maximum with respect to this property.
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PROOF. Let n € G- (2}, and A~ '(n) = ((a',0"™): L<t<t, t7#t). Since S has
zero divisors there exists (x,y) € (I, D)X, )—=({0} XDUUI X {0}) such that 0<
x<d, 0<y<bl_£ for some ¢ € [¢.1,] and h(x,y)=2z. Now there exist 2",y € (0,1)

wt

such that («, DA™ (m)U(L y’)h"l(n)(:{(a"".b”_”'): 0<i<1} and (x,y)E{(a .
B°""y. 0<t<1), w>1. Now for (%) € (., 1) k™ U Y (n), h(z, 7)==
Select £=lub {#: (. ¥) € (3, l)h—l(n) implies h(%, )=z} and let y=Ilub{y: (7, ¥
S (l.j)h*l(n) implies h(x, ¥)=z}. For (%, ¥) € (&, l)k'l(n) we have h(%, 7)==z
Also for (£.%) € (1. )k~ (1), h(x,5)=z. Also setting #=h(#,1) and v=h(1, §);
ucU—(z}, vEV— {2}, nu=2, nv=z and % and v are maximum with respect to
this property.

Let GE Y and G#{z}. Select n € G— (z}; there exist ¢,d € (0,1) such that
' m=((c.d"): f<t<t,t;#t,}. By 2.16 there exists # €U~ [z} such that
nu=z, but u<u'<i, mu'#z. Let h(x,1)=w. From lemma 1 [5], (x, 1) {(¢,d'™"):
H<I<t)C (™, d“™"™): 0<t<1). Let a=c", b=d". It can be shown without any
difficulty that the @ and b obtained above are independent of the choice of .

For each G;€ Y and G;# {2}, find @, b; € (0, 1) in the manner ¢ and b were chosen

above. Set M'-:h_l(Gl-)—{(x.y): h(x,y)=z and af <5<l bt.l_'t<ygl for some ¢
E [05 1] } L]

2.17 LEMMA. M, is an ideal of (I, )X(I,*) and M;Nh™'(2) is closed.

PROOF. Let (x.y) €M; and («",y) €, )X, ). If h(x,y)=z then Onga:.
‘and OSygb:“t for some € [0, 1].Hence h(xx’, yy") =2z, and ngx’ga:., Ogyy'gb:—t,
that is, (xx,yy") € M,. Suppose h(x,y)#z. If h(xx’,yy)#z, then (xx’,yy) E M.
If h(xx’,yy")=2, we must show OSxx’Sa:-. OSyy’Sb:_! for some ¢ € [0,1].
Suppose OSa:. <xx" and Osbs_!<yy’ for some ¢ € [0,1]. We have (xx’, ") € {(a",
b"'“): 0<t<1} and 0<¢g<{1. From the construction of M, there exists EXIN=

rt

(@) 0<t<1), 0<g<r<1, h(k, 9) € G—{z}. But by 2.15, h(, §)=z. This
is a contradiction. Thus (xz’,yy )EM; and M, is an ideal.

Let (x, y)eEanh_I(z). Then either h(x,y)#z or h(x,y)=z and there exists

te [0,1] such that a:. <x<1 and b: = <y<l1. If h(x, )%z, then there exists a
neighborhood Q of (x,%) in (I, )X (I, *) such that z& h(Q). If k(x,y) =2z, then we
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need only show that there exists a neighborhood Q of (x,y) such that QN\M;=¢.
Suppose to the contrary that QMM ¢ for every ncighborhood Q of (x,%). Then
0, )% [0,))CM,. Let (£ 3) € (g, x)x(b}". ¥). Then h(x,¥) =2, (%.7) € M, and
(3,9 {(a", 57%): 0<t<1} and 0<¢<1. This is impossible. Thus Mtﬂk“l(z) is
closed in (I, )X, *).

2.18 REMARK. For G; € ¥ and G;# [z}, we note that the definition of M; gives
vs 171G~ (zDCM,Ch ™ (G, and M;Nh™'(2) is closed in (1, )X, ). Thus
2.7 and 2.8 apply to M,

2.19 LEMMA. Let M =h™'(2). If i#j, then M; \M; CM,.

PROOF. Let (x.y) € M; ﬂM; , i#j. If h(x,y)#2z, then there exist z’,»'€(0,1)
such that ('cx’,yy')EM,-ﬂMj and h(xx’,yy")#z. But this implies h(xx’,yy") € G,N
Gj— {z}. This is impossible. Thus k(x,y)=z and M; ﬂM} CM, for i#j.

The ideals M}, M, for i=1, 2, 3, -, are closed ideals of (I, )x(/, *). Also
M,=M,; .

Now consider the collection #(S) where .#(S)= (M}, (aj. bj): =0, 1, 2, 8%,
and j=1, 2, 3, «}.

From the construction of .#(S) and 2.19 we see that .#(S) satisfies the hypo-
thesis of 1.2 and thus we have the following result:

2.20 LEMMA. (I, XL, D])/R(.#(S)) is a semigroup.

9,21 DEFINITION. We will say that S is an A-semigroup if S satisfies property
() and the boundary of S is the union of two usual unit intervals.

2.22 THEOREM. If S is an A-semigroup, then .#(S) is of Class A and hence
[(I, )X, )] /R(A(S)) is an A-semigroup.

PROOF. In view of what has already been shown, we need only show that M}
N0} X TUI X {0)C{(0,1), (1,0)} for i>0. Let (x, DEM; and x>0. Then by 2.8
we see that (x7,1) € M, for 0<x’<x. Now the restriction of & from I {1} onto
U is an iseomorphism, hence h(x’,1) €G,;—{z}. Fix 2’ € (0,x) and let (z,7) €
(I, HOx, H—Ux {1} U {1} xI) with k(%, ¥)=h(x’,1). Since S has zero divisors
there exists (e,d) € (I, )X (I, )= ({0} xHDUUI % {0}) such that h(c,d)=z. Now
there exists n€ {1, 2, 3, -} such that 0<z"<c¢ and 0<¥"<d. Hence h(z’", 1)=
h(x", ¥")=h(p.q) - h(c,d) =2z for some (p,q) € (I, )X (I, *). Thisis a contradiction.
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Thus if (x,1) € M}, x=0. A similar argument can be used to show that if (1,y)
€ M,*, then y=0. We conclude that M7 N({0} xTUIx {0})C{(0, 1), (1,0)}.

2.23 DEFINITION. A semigroup S is said to be a B-semigroup if S satisflics
property (8) and the boundary of S is the union of a usual unit interval and a
nil thread.

2.24 THEOREM. If S isa B-semigroup then .#(S) is of Class B and hence [(I, *)
X, D] /R(A#(S)) is a B-semigroup.

PROOF. We neced only show that M; N XDC{(L 0} and MN({1} < TU {1}
XI)=[0,1/2] X {1} U {(1,0)}. The latter holds since My=h'(z).  Now suppose
(Ly)eM; N({1} xD) and y>0. Then by 2.8 (Ly)E M, for 0<y'<y. Now
k| {1} X I—U is an iscomorphism, hence k(1,y") € G,— {z}. Fixy’ € (0,y) and let (%, ¥)
€ (L, )X, *) with k(% 3)=h(1,y"). Since M D (0, 1/2] X[ there exists an n E{1,
2 3, -} such that (2", 5") € M, But h(1,y™)=h(z",5")=2. This isa contradic-
tion. Thus y=0 and M} N({1} xI)={(1,0)}.

2.25 DEFINITION. A C-semigroup is a semigroup S satisfying property (8) and
the boundary of S is the union of two nil threads.

2.26 THEOREM. If S is a C-semigroup, then .#(S) is of Class C and hence
(£, )X, D) /R(A#(S)) is a C-semigroup.

PROOF. Since M :Muzk_l(z) we get My N({1} XTUIx{1})={1} x[0,1/2] U
[0,1/2] X {1}. Hence we need only show thatif (x,1), (1) € M;, then 0<x<1/2
or 0<y<1/2. Let (x,1), (Ly) EM; and 1/2<x<1 and 1/2<y=<1. Then (x’,1),
(Ly) €M, for 1/2<x'<x<land 1/2<y’<y<l. Hence a(x’, 1), k(L ¥) €G;— {3].
This implies that there exist s,s" € S— {z] such that h(x’, 1Ds=h(1,y)s’#z. Hence
by 2.9 there exist %, y& [0,1] such that h(x’, DAh(z, 1)=h(1,y)k(1, 7)5#2z. Thus
h(x'%,1)=h(1,y'¥)#z. This contradicts the fact that UNV ={z7}. We conclude
that if (x, 1), (1,%) € M} that 0<x<1/2 or 0<y<1/2.

2.27 REMARK. If S satisfies property (3), then S is an A-semigroup, B-semi-
group, or C-semigroup. Hence #(S) is of Class A4, Class B, or Class C, respec-
tively.

2.28 THEOREM. If S satisfies property (B), then [(I, )X(I, )1/R(A#(S))
satisfies property (). Moreover, [(I, )X (I, )]/R(#(S)) is iseomorphic lo S.

PROOF. Consider the following diagram:
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7, e, ‘)——h——+S
‘ o
! 7
¢ " "hp—1
|
Jo

(L, )X, I1/R(A(S))

To show that h¢'l is an iseomorphism we need only show that qﬁ—l o(x, y)=h‘1
h(x.) for all (x.3) € (I, IXL ). If (x.y) € My=h""(2). then ¢~ '$(x.3)=M,
and h_l(k(x,y))=h_1(z):MU. Also if ¢_l¢(x.y)= {(x,3)}, then k(x,y) €], thus
K (h(x3))= ((.9)}. Now suppose (x.9) & M, and ¢~ '(¢(x.y)) is not a point.
Then ¢_1(¢(x. ¥))=the component of (M} N [(a:."'. b:."_w): 0<it<1, for some weE
(0.1) containing (x.3)={(¢]", 6 “): t,<t<t, t,#t,). Hence {(c.d): c<a]’, d<
bf_m for some & [tl.tzl}CMJ.. Let w,—w, 0<w<w,<l. We have a?’"(a:.”.
b7 <™ for t& [t t,). This implies {(@}*,8]""): #<t<t}) CM, From
2.8, (@, b7 ") =h(@™, 67" = (@, 6" for t,<t<t, Hence limh(a',
BT =h(a b T ) =h(x.y) for t<t<t, Thus h™'(h(x, )= {@"8'™"): <t
<t,} and ¢_l(¢(1. y)):h_l(h(x. ¥)). The induced homomorphism theorem implies

that hgﬁ_l is an iseomorphism.
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