SEMIGROUPS ON THE DISK WITH THREAD BOUNDARIES

By E. E. DeVun

In an earlier work [5] commutative semigroups on the two-cell without zero divisors whose boundary consisted of two usual unit intervals were determined. In this note the semigroups with zero divisors are determined. Moreover, if S is a commutative semigroup on the two-cell whose boundary consists of two threads with E(S) (the set of idempotents of S)= $\{z,i\}$ where z is the zero for S and i is the identity for S, then a classification for S is obtained when the results here are combined with the results in [5]. Standard notation found in [7] will be used here. In particular, we will let (I, \cdot) be the usual unit interval. Also A^* will represent the topological closure of A.

- 1.1. DEFINITION. A commutative semigroup S is said to have property (β) if
- (1) S is topologically a two-cell
- (2) The boundary of S is the union of two threads
- (3) S has zero divisors
- (4) $E(S) = \{z, i\}$ where z is a zero for S and i is an identity for S.

Since commutative semigroups on the two-cell without zero divisors and whose boundary consists of two usual unit intervals have been determined in [5], we shall concern ourselves only with semigroups with zero divisors. In section 1 we exibit a method for construction semigroups with property (β) ; later in section 2 we show that these are the only examples.

- 1.2. Consider the collection \mathcal{M} , $\mathcal{M} = \{M_i, (a_j, b_j): i=0, 1, 2, 3, \dots, j=1, 2, 3, \dots\}$ whose elements satisfy the following conditions:
 - (1) M_i is a closed ideal of $(I, \cdot) \times (I, \cdot)$ for $i=0, 1, 2, 3, \cdots$.
 - (2) $(\{0\} \times [0, 1]) \cup ([0, 1] \times \{0\}) \subseteq M_0$.
 - (3) $a_j, b_j \in (0, 1)$ for $j=1, 2, 3, \cdots$
 - (4) $M_i \cap M_j \subset M_0$ for $i \neq j$.
 - (5) If i=j, then $M_i \cap \{(a_j^{wt}, b_j^{w-wt}) : 0 \le t \le 1\} \subset M_0$ for $w \ge 1$ and $M_i \cap \{(a_j^{wt}, b_j^{w-wt}) : 0 \le t \le 1\} \cap M_0 = \phi$ for 0 < w < 1.

1.3. LEMMA. If M_i , i=0, 1, 2, 3, \cdots are closed ideals of $(I, `) \times (I, `)$ such that $M_i \cap M_j \subset M_0$ for $i \neq j$, then $\bigcup_{i=0}^{\infty} M_i$ is a closed ideal of $(I, `) \times (I, `)$. Moreover, if $\{w_n\}$ is a sequence in $\bigcup_{i=0}^{\infty} M_i$ which converges to w and $\{w_n\}$ is not eventually in any M_i , then $w \in M_0$.

PROOF. Since the union of ideals is an ideal we need only show $\bigcup_{i=0}^{\infty} M_i$ is closed. We distinguish two cases.

Case 1. Let $w_n \to w$ with $\{w_n\} \subset \bigcup_{i=0}^m M_i$ for some natural number m. If $\{w_n\}$ is eventually in M_j for some j, then $w_n \to w \in M_j$, since M_j is closed. If $\{w_n\}$ is not eventually in M_j for some j, then there exist subsequences $\{w_n'\} \subset M_j$ and $\{w_n''\} \subset M_k$ for some j and k, $k \neq j$. Now $w_n' \to w \in M_j$ and $w_n'' \to w \in M_k$. Hence $w \in M_j \cap M_k$ $\subset M_0$, and $w \in \bigcup_{i=0}^\infty M_i$.

Case 2. Now suppose $\{w_n\}$ is contained in an infinite number of M_i 's. Then there exists a subsequence $\{w_n'\}$ with each w_n' in a different M_k . Let $w_n'=(x_n,y_n)$ and w=(x,y). Since $w_n\to w$, $x_n\to x$ and $y_n\to y$. We claim $x_n\ge x_{n+1}$ implies $y_n< y_{n+1}$, since otherwise $y_n\ge y_{n+1}$, and hence there exist x_n' , y_n' such that $(x_n,y_n)\cdot(x_n',y_n')=(x_{n+1},y_{n+1})$. Hence (x_{n+1},y_{n+1}) , $(x_n,y_n)\in M_k$ for some k, and this is a contradiction. Now there exists a subsequence of $\{x_n\}$ or $\{y_n\}$ which is decreasing, say $\{\overline{x}_n\}$ is decreasing and $\overline{x}_n\to x$. Now $(\overline{x}_n,\overline{y}_n)=\overline{w}_n\to w$ and there exist $\overline{x}_n,\widetilde{y}_n$ such that $(\overline{x}_n,\overline{y}_n)(\overline{x}_n,1)=(\overline{x}_{n+1},\overline{y}_{n+1})$ $(1,\widetilde{y}_n)$. Hence $(\overline{x}_n,\overline{y}_n)(\overline{x}_n,1)$, $(\overline{x}_{n+1},\overline{y}_{n+1})(1,\widetilde{y}_{n+1})\in M_0$. Now consider the sequence $(\overline{x}_n,\overline{y}_n)(\overline{x}_n,1)$. Since $\overline{x}_n\overline{x}_n=\overline{x}_{n+1}$, and $\overline{x}_n\to x$, $\overline{x}_{n+1}\to x$, we have $(\overline{x}_{n+1},\overline{y}_n)\to (x,y)$. But $(\overline{x}_n,\overline{y}_n)(\overline{x}_n,1)\in M_0$ implies $(x,y)\in M_0$, and we have $w\in\bigcup_{i=0}^\infty M_i$.

- 1.4. DEFINITION. Define a relation $R(\mathcal{M})$ on $(I, \cdot) \times (I, \cdot)$ by $(\hat{r}, \hat{s}) \in R(\mathcal{M})$ if
- (1) $\hat{r} = \hat{s}$
- (2) $\hat{r}, \hat{s} \in M_0$
- (3) $\hat{r}, \hat{s} \in M_i$ and there exist a w with 0 < w < 1 such that \hat{r} and \hat{s} are contained in the same component of $(M_i \cap \{(a_i^{wt}, b_i^{w-wt}) : 0 \le t \le 1\})$.
- 1.5. LEMMA. The relation $R(\mathcal{M})$ is a closed congruence, and hence

 $[(I, \cdot) \times (I, \cdot)]/R(\mathcal{M})$ is a semigroup.

PROOF. The proof follows directly from 1.3 and lemma 1 of [5].

1.6. DEFINITION. We say the collection \mathscr{M} defined in 1.2 is of Class A if for $M_i \in \mathscr{M}$, $M_i \cap ((0.1] \times \{1\}) \cup (\{1\} \times (0,1]) = \phi$.

Class B if for $M_0 \in \mathcal{M}$, $M_0 \cap (I \times \{1\}) = [0, 1/2] \times \{1\}$ and $M_i \in \mathcal{M}$ implies $M_i \cap (\{1\} \times (0, 1]) = \phi$.

Class C if for $M_0 \in \mathcal{M}$, $M_0 \cap ((I \times \{1\}) \cup (\{1\} \times I)) = ([0, 1/2] \times \{1\}) \cup (\{1\} \times [0, 1/2])$, and $M_i \in \mathcal{M}$ implies $\pi_1(M_i \cap [(1/2, 1] \times \{1\}]) \cap \pi_2(M_i \cap [\{1\} \times (1/2, 1]]) = \phi$.

Let \mathscr{M} be of class A, B, or C and $\phi: (I, \cdot) \times (I, \cdot) \to [(I, \cdot) \times (I, \cdot)]/R(\mathscr{M})$ be the natural map. It is easily seen that this map is monotone and no equivalence class of $R(\mathscr{M})$ separates $(I, \cdot) \times (I, \cdot)$. Employing a theorem of Whyburn [8] we see $[(I, \cdot) \times (I, \cdot)]/R(\mathscr{M})$ is a two cell. Since $(I, \cdot) \times (I, \cdot)$ is commutative, we have $(I, \cdot) \times (I, \cdot)/R(\mathscr{M})$ is commutative. Moreover, $[(I, \cdot) \times (I, \cdot)]/R(\mathscr{M})$ is a commutative semigroup satisfying property (β) . Thus we have the following:

1.7. THEOREM. If \mathscr{M} is a collection satisfying 1.2 and of Class A, B or C, then $[(I, \cdot) \times (I, \cdot)]/R(\mathscr{M})$ is a commutative semigroup with property (β) . Furthermore, if \mathscr{M} is of Class A, the boundary of $[(I, \cdot) \times (I, \cdot)]/R(\mathscr{M})$ is the union of two usual unit intervals; if \mathscr{M} is of Class B, the boundary of $[(I, \cdot) \times (I, \cdot)]/R(\mathscr{M})$ is the union of a usual unit interval and a nil thread; if \mathscr{M} is of Class C, then the boundary of $[(I, \cdot) \times (I, \cdot)]/R(\mathscr{M})$ is the union of two nil threads.

Now we will show that the above semigroups are the only semigroups satisfying property (β) . Throughout S will be a commutative semigroup with property (β) . We intend to construct a collection \mathscr{M} such that $[(I, \cdot) \times (I, \cdot)]/R(\mathscr{M})$ is isemmorphic to S.

2.1. LEMMA (Hilderbrant [6]) If the boundary of $S=U \cup V$ where U and V are threads, then $U \cap V = \{z, i\}$ and $S=U \cdot V$.

Since U and V are threads with $E(S) = \{z, i\}$, there exist homomorphisms $f: (I, \cdot) \to U$ and $g: (I, \cdot) \to V$.

2.2. LEMMA. There exist a continuous homomorphism h: $(I, \cdot) \times (I, \cdot) \rightarrow S$ which is onto S.

PROOF. Define $h: (I, \cdot) \times (I, \cdot) \to S$ by $h(x, y) = f(x) \cdot g(y)$. Since $S = U \cdot V$, h is the product of homomorphisms, and h is continuous; $h: (I, \cdot) \times (I, \cdot) \to S$ is a continuous homomorphism onto S.

Moreover, the homomorphism $h: (I, \cdot) \times (I, \cdot) \rightarrow S$ onto S can be chosen such that

- (a) if U and V are usual unit intervals then the restriction of h to $\{1\} \times I$ and $I \times \{1\}$ are iseomorphisms onto U and V respectively.
- (b) if U is a usual unit interval and V is a nil thread, then h restricted to $I \times \{1\}$ is an iseomorphism onto U while h maps $\{1\} \times [0, 1/2]$ onto z and is 1-1 restricted to $\{1\} \times [1/2, 1]$.
- (c) if U and V are nil threads, then h maps $\{1\} \times [0, 1/2]$ and $[0, 1/2] \times \{1\}$ to z and is 1-1 restricted to $\{1\} \times [1/2, 1]$ and $[1/2, 1] \times \{1\}$.

The homomorphism h will always be chosen this way.

Combining the results in [1], [3], and [5] it can be shown that for each $s \in S$ $-\{z\}$ there exists $a_s, b_s \in (0, 1)$ and $t_s, t_s' \in [0, 1]$ such that $h^{-1}(s) = \{(a_s^t, b_s^{1-t}): t_s \le t \le t_s'\}$. Since S has this property we will call S rooted.

- 2.3. NOTATION. Let $J = \{s: s \in S \text{ and } h^{-1}(s) \text{ is not a point} \}$. Note J is an ideal of S.
- 2.4 DEFINITION. Let P be an ideal of S. We say P is positive if for $p, p' \in P$ $-\{z\}$ there exist $s, s' \in S$ such that $ps = p's' \neq z$.
- 2.5 LEMMA. If S is rooted and $P \subset J$ is a positive ideal, and $p, p' \in P \{z\}$ with $h^{-1}(p) = \{(a^t, b^{1-t}): t_1 \le t \le t_2, t_1 \ne t_2\}$, then there exists $w \in (0, \infty)$ such that $h^{-1}(p') = \{(a^{wt}, b^{w(1-t)}): t_1' \le t \le t_2', t_1' \ne t_2'\}$.

PROOF. We know there exist $c,d \in (0,1)$ such that $h^{-1}(p') = \{(c^t,d^{1-t}): t_1' \le t \le t_2', t_1' \ne t_2'\}$. Now there exist $s,s' \in S$ such that $sp = s'p' \ne z$ and $sp,s'p' \in J$. Let $h(x_1,y_1)=s$ and $h(x_2,y_2)=s'$. For $(x,y)\in h^{-1}(p)\cdot (x_1,y_1)$ we have h(x,y)=ps, and for $(x',y')\in h^{-1}(p')\cdot (x_2,y_2)$ we have h(x',y')=p's'. But lemma 1 [5] implies $h^{-1}(p)\cdot (x_1,y_1)=\{(a^{u\delta},b^{u(1-\delta)}): \delta_1\le \delta\le \delta_2, \delta_1\ne \delta_2\}$ and $h^{-1}(p')\cdot (x_2,y_2)=\{(c^{\gamma n},d^{\gamma(1-n)}): n_1\le n\le n_2, n_1\ne n_2\}$. However, there exists $m,q\in (0,1)$ such that $h^{-1}(sp)=h^{-1}(s'p')=\{(m^\lambda,q^{1-\lambda}): \lambda_1\le \lambda\le \lambda_2, \lambda_1\ne \lambda_2\}$. This implies $a^u=m=c^\gamma$ and $b^u=q=d^\gamma$, or $c=a^{u/\gamma}$ and $d=b^{u/\gamma}$. This completes the proof.

2.6. DEFINITION. Let P be a positive ideal of S with $P \subset J$. If $p \in P - \{z\}$ with $h^{-1}(p) \supset \{(a^t, b^{1-t}): t_1 \leq w \leq t \leq t_2, t_1 \neq t_2\}$, if also N is an ideal of $(I, \cdot) \times (I, \cdot)$ such

that $h^{-1}(P - \{z\}) \subset N$ and $N \subset h^{-1}(P)$, then we define $Com((P, N); (a^w, b^{1-w}))$ to be the component of $(N \cap \{(a^t, b^{1-t}): 0 \le t \le 1\})$ containing (a^w, b^{1-w}) .

2.7 LEMMA. If S is rooted and $P \subset J$ is a positive ideal and N is an ideal of $(I, \cdot) \times (I, \cdot)$ such that $h^{-1}(P - \{z\}) \subset N \subset h^{-1}(P)$ and $p \in P - \{z\}$ with $h^{-1}(p) = \{(a^t, b^{1-t}): t_1 \leq t \leq t_2, t_1 \neq t_2\}$, then $h^{-1}(p) = Com((P, N); (a^{t_1}, b^{1-t_1}))$.

PROOF. Let $h^{-1}(p) = \{(a^q, b^{1-q}): q_1 \leq q \leq q_2, q_1 \neq q_2\} \subset \text{Com}((P, N); (a^{t_1}, b^{1-t_1}))$. If $h^{-1}(p) \neq \text{Com}((P, N); (a^{t_1}, b^{1-t_1}))$, we can assume without loss of generality that there exists an $\gamma < q_1$ such that for all t with $\gamma \leq t \leq q_1$ we have $h(a^t, b^{1-t}) \in P - \{z\} \subset J - \{z\}$. Hence for each $t \in [\gamma, q_1]$ there exist β_t and γ_t such that $h^{-1}(h(a^t, b^{1-t})) = \{(a^w, b^{1-w}): \beta_t \leq w \leq \gamma_t, \beta_t \neq \gamma_t\}$. Moreover for each $s_1, s_2 \in S$ with $s_1 \neq s_2 \in S$ with $s_1 \neq s_2 \in S$ with $s_2 \neq s_3 \in S$ with $s_3 \neq s_4 \in S$ with $s_4 \neq s_5 \in S$ with $s_4 \neq s_5$

2.8 LEMMA. Let S be rooted with $P \subset J$ a positive ideal, and N an ideal of $(I, \cdot) \times (I, \cdot)$ such that $h^{-1}(P - \{z\}) \subset N \subset h^{-1}(P)$ and $N \cap h^{-1}(z)$ closed. Then $(1, d) \in N^*$ implies $(1, c) \in N$ for all $0 \le c < d$.

PROOF. Let $(1,d) \in N^*$. One sees immediately that $\{(x,y) \colon 0 \le x < 1, \ 0 \le y < d\}$ $\subset N$. Let $p \in P - \{z\}$ and $h^{-1}(p) = \{(a^t,b^{1-t}) \colon t_1 \le t \le t_2, \ t_1 \ne t_2\}$. For 0 < c < d we have $(1,c) = (1,b^w)$ for some $w \in (0,\infty)$. Hence there exists a q such that $\{(a^{wt},b^{w-wt}) \colon 0 < t < q\} \subset N$. If $h(a^{wt},b^{w-wt}) = z$, hence h(1,c) = z and thus $(1,c) \in N$. Also if $h(a^{wt'},b^{w-wt'}) = p' \in P - \{z\}$ for some $t' \in (0,q)$, then $h(a^{wt},b^{w-wt}) = p'$ for all $t \in (0,q)$. Thus $h(1,c) = p' \in P - \{z\}$ and $(1,c) \in N$. For c=0, we have $(1,c') \in N$ for 0 < c' < d, and N is an idea. Thus $(1,c) = (1,0) \in (1,0) \cdot (1,c') \in N$.

Now we shall investigate the ideal J of S.

- 2.9 LEMMA. If $s \in J$, then sS = sU = sV [5].
- 2.10 DEFINITION. Let $s \in J$, and define $G_s = \{s': \text{ such that } s'S \cap sS \neq \{z\}$, and $s', s \in J\} \cup \{z\}$. Let $\Sigma = \{G_s: s \in J\}$. Note $s \in J$ implies $s \in G_s$.
- 2.11 LEMMA. If $r, s, w \in S$ and $rU \cap sU \neq \{z\}$, and $sU \cap wU \neq \{z\}$, then $rU \cap wU \neq \{z\}$.

PROOF. From above we have $ru_1 = su_2 \neq z$, and $su_3 = wu_4 \neq z$. Let $u = \min \{u_2, u_3\}$. Then $su \neq z$, and $su \in rU \cap wU$.

2.12 LEMMA. If $r, s, w \in J$, and $rS \cap sS \neq \{z\}$, and $sS \cap wS \neq \{z\}$, then $rS \cap wS \neq \{z\}$. PROOF. From 2.9 we have that rS = rU, sS = sU, and wS = wU. Now apply the previous lemma.

2.13 LEMMA. If $G_r, G_s \in \Sigma$ and there exists $w \neq z$ such that $w \in G_r \cap G_s$, then $G_r = G_s$.

PROOF. Let $r' \in G_r$. If r' = z, then $r' \in G_s$. If $r' \neq z$, then $r'S \cap rS \neq \{z\}$. Also $wS \cap rS \neq \{z\}$ and $wS \cap sS \neq \{z\}$. Applying 2.12 we see that $r'S \cap wS \neq \{z\}$. Applying 2.12 again we get that $r'S \cap sS \neq \{z\}$. Hence $r' \in G_s$, and $G_r \subset G_s$. By symmetry we get $G_s \subset G_r$. Thus $G_r = G_s$.

2.14 LEMMA. If $G_s \in \Sigma$, then G_s is an ideal of S.

PROOF. Suppose $G_s = \{z\}$. Then G_s is an ideal of S. Now suppose $G_s \neq \{z\}$. Let $w \in G_s$, and $r \in S$. If rw = z, then by definition $rw = z \in G_s$. If $rw \neq z$, then $w \neq z$, hence $wS \cap sS \neq \{z\}$. Also $rw \in rwS \cap wS \neq \{z\}$. Thus by 2.12 we have $rwS \cap sS \neq \{z\}$. Hence G_s is an ideal of S.

Without much difficulty it can be shown the collection Σ is countable. Also by 2.12 we see that for each $G \in \Sigma - \{\{z\}\}$, G is a positive ideal of S.

2.15 LEMMA. Let G be a positive ideal of S which is contained in J. Suppose h(x,y)=z. If there exist $n\in G-\{z\}$ with $h^{-1}(n)=\{(a^t,b^{1-t}):\ t_1\le t\le t_2\}$ and w>1, $t'\in [0,1],\ t''\in [t_1,t_2]$ such that $a^{wt'}=x< a^{t'},\ b^{w-wt'}=y< b^{1-t'},\ and\ if\ q\ge w$ then for all $(\bar x,\bar y)\in (h^{-1}(G)\cap \{(a^{qt},b^{q-qt}):\ 0\le t\le 1\})$ we have $h(\bar x,\bar y)=z$.

PROOF. Suppose $h(\bar{x}, \bar{y}) \neq z$. Then $n, h(\bar{x}, \bar{y}) \in G - \{z\}$. Hence there exist $s, s' \in S - \{z\}$ such that $ns = h(\bar{x}, \bar{y})s' \neq z$. Now $h^{-1}(ns) = h^{-1}(h(\bar{x}, \bar{y}) \cdot s') \supset \{(a^{rt}, b^{r-rt}): t_1 \leq t \leq t_2, t_1 \neq t_2\}$, $r \geq q \geq w$. Moreover, there exists $t \in [t_1, t_2]$ such that $0 < a^{rt} \leq x$ and $0 < b^{r-rt} \leq y$, hence $(\hat{x}, \hat{y}) \cdot (x, y) = (a^{rt}, b^{r-rt})$ for some $(\hat{x}, \hat{y}) \in (I, \cdot) \times (I, \cdot)$. But $z = h(x, y) \cdot h(\hat{x}, \hat{y}) = h(a^{rt}, b^{r-rt}) = ns$. This is a contradiction. Hence $h(\bar{x}, \bar{y}) = z$.

2.16 LEMMA. If $G \in \Sigma$ and $G \neq \{z\}$ and $n \in G - \{z\}$, then there exists $u \in U - \{z\}$ such that nu = z, and there exists $v \in V - \{z\}$ such that nv = z. Moreover u and v can be chosen to be maximum with respect to this property.

PROOF. Let $n \in G - \{z\}$, and $h^{-1}(n) = \{(a^t, b^{1-t}) : t_1 \le t \le t_2, t_1 \ne t_2\}$. Since S has zero divisors there exists $(x, y) \in (I, \cdot) \times (I, \cdot) - (\{0\} \times I) \cup (I \times \{0\})$ such that $0 < x < a^t$, $0 < y < b^{1-t}$ for some $t \in [t_1, t_2]$ and h(x, y) = z. Now there exist $x', y' \in (0, 1)$ such that $(x', 1)h^{-1}(n) \cup (1, y')h^{-1}(n) \subset \{(a^{wt}, b^{w-wt}) : 0 \le t \le 1\}$ and $(x, y) \in \{(a^{wt}, b^{w-wt}) : 0 \le t \le 1\}$, w > 1. Now for $(\bar{x}, \bar{y}) \in (x', 1) h^{-1}(n) \cup (1, y')h^{-1}(n)$, $h(\bar{x}, \bar{y}) = z$. Select $\hat{x} = \text{lub} \ \{\bar{x} : (\bar{x}, \bar{y}) \in (\bar{x}, 1)h^{-1}(n) \text{ implies } h(\bar{x}, \bar{y}) = z\}$ and let $\hat{y} = \text{lub} \{\bar{y} : (\bar{x}, \bar{y}) \in (1, \tilde{y})h^{-1}(n) \text{ implies } h(\bar{x}, \bar{y}) = z\}$. For $(\bar{x}, \bar{y}) \in (\hat{x}, 1)h^{-1}(n)$ we have $h(\bar{x}, \bar{y}) = z$. Also for $(\bar{x}, \bar{y}) \in (1, \hat{y})h^{-1}(n)$, $h(\bar{x}, \bar{y}) = z$. Also setting $u = h(\hat{x}, 1)$ and $v = h(1, \hat{y})$; $u \in U - \{z\}$, $v \in V - \{z\}$, nu = z, nv = z and u and v are maximum with respect to this property.

Let $G \in \Sigma$ and $G \neq \{z\}$. Select $n \in G - \{z\}$; there exist $c, d \in (0, 1)$ such that $h^{-1}(n) = \{(c^t, d^{1-t}): t_1 \leq t \leq t_2, t_1 \neq t_2\}$. By 2.16 there exists $u \in U - \{z\}$ such that nu = z, but $u < u' \leq i$, $nu' \neq z$. Let h(x, 1) = u. From lemma 1 [5], (x, 1) $\{(c^t, d^{1-t}): t_1 \leq t \leq t_2\} \subset \{(c^{wt}, d^{w-wt}): 0 \leq t \leq 1\}$. Let $a = c^w$, $b = d^w$. It can be shown without any difficulty that the a and b obtained above are independent of the choice of n.

For each $G_i \in \Sigma$ and $G_i \neq \{z\}$, find $a_i, b_i \in (0, 1)$ in the manner a and b were chosen above. Set $M_i = h^{-1}(G_i) - \{(x, y): h(x, y) = z \text{ and } a_i^t < x \le 1, b_i^{1-t} < y \le 1 \text{ for some } t \in [0, 1]\}$.

2.17 LEMMA. M_i is an ideal of $(I, \cdot) \times (I, \cdot)$ and $M_i \cap h^{-1}(z)$ is closed.

PROOF. Let $(x,y) \in M_i$ and $(x',y') \in (I,\cdot) \times (I,\cdot)$. If h(x,y) = z then $0 \le x \le a_i^t$ and $0 \le y \le b_i^{1-t}$ for some $t \in [0,1]$. Hence h(xx',yy') = z, and $0 \le xx' \le a_i^t$, $0 \le yy' \le b_i^{1-t}$, that is, $(xx',yy') \in M_i$. Suppose $h(x,y) \ne z$. If $h(xx',yy') \ne z$, then $(xx',yy') \in M_i$. If h(xx',yy') = z, we must show $0 \le xx' \le a_i^t$, $0 \le yy' \le b_i^{1-t}$ for some $t \in [0,1]$. Suppose $0 \le a_i^t < xx'$ and $0 \le b_i^{1-t} < yy'$ for some $t \in [0,1]$. We have $(xx',yy') \in \{(a^{qt},b^{q-qt}): 0 \le t \le 1\}$ and 0 < q < 1. From the construction of M_i , there exists $(\hat{x},\hat{y}) \in \{(a^{rt},b^{r-rt}): 0 \le t \le 1\}$, 0 < q < r < 1, $h(\hat{x},\hat{y}) \in G - \{z\}$. But by 2.15, $h(\hat{x},\hat{y}) = z$. This is a contradiction. Thus $(xx',yy') \in M_i$ and M_i is an ideal.

Let $(x,y) \notin M_i \cap h^{-1}(z)$. Then either $h(x,y) \neq z$ or h(x,y) = z and there exists $t \in [0,1]$ such that $a_i^t < x \le 1$ and $b_i^{1-t} < y \le 1$. If $h(x,y) \neq z$, then there exists a neighborhood Q of (x,y) in $(I,\cdot) \times (I,\cdot)$ such that $z \notin h(Q)$. If h(x,y) = z, then we

need only show that there exists a neighborhood Q of (x,y) such that $Q \cap M_i = \phi$. Suppose to the contrary that $Q \cap M_i \neq \phi$ for every neighborhood Q of (x,y). Then $[0,x) \times [0,y) \subset M_i$. Let $(\bar{x},\bar{y}) \in (a_i^t,x) \times (b_i^{1-t},y)$. Then $h(\bar{x},\bar{y}) = z$, $(\bar{x},\bar{y}) \in M_i$ and $(\bar{x},\bar{y}) \in \{(a^{qt},b^{q-qt}): 0 \le t \le 1\}$ and 0 < q < 1. This is impossible. Thus $M_i \cap h^{-1}(z)$ is closed in $(I, \cdot) \times (I, \cdot)$.

2.18 REMARK. For $G_i \in \Sigma$ and $G_i \neq \{z\}$, we note that the definition of M_i gives us $h^{-1}(G_i - \{z\}) \subset M_i \subset h^{-1}(G_i)$, and $M_i \cap h^{-1}(z)$ is closed in $(I, \cdot) \times (I, \cdot)$. Thus 2.7 and 2.8 apply to M_i .

2.19 LEMMA. Let
$$M_0 = h^{-1}(z)$$
. If $i \neq j$, then $M_i^* \cap M_j^* \subset M_0$.

PROOF. Let $(x,y) \in M_i^* \cap M_j^*$, $i \neq j$. If $h(x,y) \neq z$, then there exist $x',y' \in (0,1)$ such that $(xx',yy') \in M_i \cap M_j$ and $h(xx',yy') \neq z$. But this implies $h(xx',yy') \in G_i \cap G_j - \{z\}$. This is impossible. Thus h(x,y) = z and $M_i^* \cap M_j^* \subset M_0$ for $i \neq j$.

The ideals M_i^* , M_0 for $i=1, 2, 3, \cdots$, are closed ideals of $(I, \cdot) \times (I, \cdot)$. Also $M_0 = M_0^*$.

Now consider the collection $\mathcal{M}(S)$ where $\mathcal{M}(S) = \{M_i^*, (a_j, b_j): i=0, 1, 2, 3, \cdots, and j=1, 2, 3, \cdots\}.$

From the construction of $\mathcal{M}(S)$ and 2.19 we see that $\mathcal{M}(S)$ satisfies the hypothesis of 1.2 and thus we have the following result:

- 2.20 LEMMA. $[(I, \cdot) \times (I, \cdot)]/R(\mathcal{M}(S))$ is a semigroup.
- 2.21 DEFINITION. We will say that S is an A-semigroup if S satisfies property (β) and the boundary of S is the union of two usual unit intervals.
- 2.22 THEOREM. If S is an A-semigroup, then $\mathcal{M}(S)$ is of Class A and hence $[(I, \cdot) \times (I, \cdot)]/R(\mathcal{M}(S))$ is an A-semigroup.

PROOF. In view of what has already been shown, we need only show that $M_i^* \cap (\{0\} \times I \cup I \times \{0\}) \subset \{(0,1),(1,0)\}$ for i > 0. Let $(x,1) \in M_i^*$ and x > 0. Then by 2.8 we see that $(x',1) \in M_i$ for 0 < x' < x. Now the restriction of h from $I \times \{1\}$ onto U is an iseomorphism, hence $h(x',1) \in G_i - \{z\}$. Fix $x' \in (0,x)$ and let $(\bar{x},\bar{y}) \in (I,\cdot) \times (I,\cdot) - (I \times \{1\} \cup \{1\} \times I)$ with $h(\bar{x},\bar{y}) = h(x',1)$. Since S has zero divisors there exists $(c,d) \in (I,\cdot) \times (I,\cdot) - (\{0\} \times I) \cup (I \times \{0\})$ such that h(c,d) = z. Now there exists $n \in \{1, 2, 3, \cdots\}$ such that $0 < \bar{x}^n < c$ and $0 < \bar{y}^n < d$. Hence $h(x'^n, 1) = h(\bar{x}^n, \bar{y}^n) = h(p,q) \cdot h(c,d) = z$ for some $(p,q) \in (I,\cdot) \times (I,\cdot)$. This is a contradiction.

Thus if $(x,1) \in M_i^*$, x=0. A similar argument can be used to show that if $(1,y) \in M_i^*$, then y=0. We conclude that $M_i^* \cap (\{0\} \times I \cup I \times \{0\}) \subset \{(0,1),(1,0)\}$.

2.23 DEFINITION. A semigroup S is said to be a *B-semigroup* if S satisfies property (β) and the boundary of S is the union of a usual unit interval and a nil thread.

2.24 THEOREM. If S is a B-semigroup then $\mathcal{M}(S)$ is of Class B and hence $[(I, \cdot) \times (I, \cdot)]/R(\mathcal{M}(S))$ is a B-semigroup.

PROOF. We need only show that $M_i^* \cap (\{1\} \times I) \subset \{(1,0)\}$ and $M_0 \cap (\{1\} \times I \cup \{1\} \times I) = [0,1/2] \times \{1\} \cup \{(1,0)\}$. The latter holds since $M_0 = h^{-1}(z)$. Now suppose $(1,y) \in M_i^* \cap (\{1\} \times I)$ and y > 0. Then by 2.8 $(1,y') \in M_i$ for 0 < y' < y. Now $h \mid \{1\} \times I \to U$ is an iseomorphism, hence $h(1,y') \in G_i - \{z\}$. Fix $y' \in (0,y)$ and let $(\bar{x},\bar{y}) \in (I,\cdot) \times (I,\cdot)$ with $h(\bar{x},\bar{y}) = h(1,y')$. Since $M_0 \supset [0,1/2] \times I$ there exists an $n \in \{1,2,3,\cdots\}$ such that $(\bar{x}^n,\bar{y}^n) \in M_0$. But $h(1,y'^n) = h(\bar{x}^n,\bar{y}^n) = z$. This is a contradiction. Thus y = 0 and $M_i^* \cap (\{1\} \times I) = \{(1,0)\}$.

2.25 DEFINITION. A *C-semigroup* is a semigroup S satisfying property (β) and the boundary of S is the union of two nil threads.

2.26 THEOREM. If S is a C-semigroup, then $\mathcal{M}(S)$ is of Class C and hence $[(I, \cdot) \times (I, \cdot)]/R(\mathcal{M}(S))$ is a C-semigroup.

PROOF. Since $M_0^* = M_0 = h^{-1}(z)$ we get $M_0^* \cap (\{1\} \times I \cup I \times \{1\}) = \{1\} \times [0, 1/2] \cup [0, 1/2] \times \{1\}$. Hence we need only show that if $(x, 1), (1, y) \in M_i^*$, then $0 \le x \le 1/2$ or $0 \le y \le 1/2$. Let $(x, 1), (1, y) \in M_i^*$ and $1/2 < x \le 1$ and $1/2 < y \le 1$. Then $(x', 1), (1, y') \in M_i$ for $1/2 < x' < x \le 1$ and $1/2 < y' < y \le 1$. Hence $h(x', 1), h(1, y') \in G_i - \{z\}$. This implies that there exist $s, s' \in S - \{z\}$ such that $h(x', 1)s = h(1, y')s' \ne z$. Hence by 2.9 there exist $\bar{x}, \bar{y} \in [0, 1]$ such that $h(x', 1)h(\bar{x}, 1) = h(1, y')h(1, \bar{y}) \ne z$. Thus $h(x'\bar{x}, 1) = h(1, y'\bar{y}) \ne z$. This contradicts the fact that $U \cap V = \{z, i\}$. We conclude that if $(x, 1), (1, y) \in M_i^*$ that $0 \le x \le 1/2$ or $0 \le y \le 1/2$.

2.27 REMARK. If S satisfies property (β) , then S is an A-semigroup, B-semigroup, or C-semigroup. Hence $\mathcal{M}(S)$ is of Class A, Class B, or Class C, respectively.

2.28 THEOREM. If S satisfies property (β) , then $[(I, \cdot) \times (I, \cdot)]/R(\mathcal{M}(S))$ satisfies property (β) . Moreover, $[(I, \cdot) \times (I, \cdot)]/R(\mathcal{M}(S))$ is isomorphic to S.

PROOF. Consider the following diagram:

To show that $h\phi^{-1}$ is an iseomorphism we need only show that ϕ^{-1} $\phi(x,y) = h^{-1}$ h(x,y) for all $(x,y) \in (I,\cdot) \times (I,\cdot)$. If $(x,y) \in M_0 = h^{-1}(z)$, then $\phi^{-1}\phi(x,y) = M_0$ and $h^{-1}(h(x,y)) = h^{-1}(z) = M_0$. Also if $\phi^{-1}\phi(x,y) = \{(x,y)\}$, then $h(x,y) \notin J$, thus $h^{-1}(h(x,y)) = \{(x,y)\}$. Now suppose $(x,y) \notin M_0$ and $\phi^{-1}(\phi(x,y))$ is not a point. Then $\phi^{-1}(\phi(x,y)) = \text{the component of } (M_i^* \cap \{(a_i^{tw}, b_i^{w-wt}) : 0 \le t \le 1, \text{ for some } w \in (0,1) \text{ containing } (x,y) = \{(a_i^{wt}, b_i^{w-wt}) : t_1 \le t \le t_2, t_1 \ne t_2\}$. Hence $\{(c,d) : c < a_i^{wt}, d < b_i^{w-wt} \text{ for some } t \in [t_1, t_2]\} \subset M_j$. Let $w_n \to w$, $0 < w < w_n < 1$. We have $a_i^{w,t} < a_i^{wt}, b_i^{w-w,t} < b_i^{w-w,t} \text{ for } t \in [t_1, t_2]$. This implies $\{(a_i^{w,t}, b_i^{w-w,t}) : t_1 \le t \le t_2\} \subset M_i$. From 2.8, $h(a_i^{w,t}, b_i^{w-w,t}) = h(a_i^{w,t}, b_i^{w-w,$

Wichita State University

BIBLIOGRAPHY

- [1] Borrego, J.T., Cohen, H., and DeVun, E.E., Uniquely Representable Semigroups. Pac. J. Math., to appear.
- [2] Brown, D.R., Topological semilattices on the two-cell. Pac. J. Math., 15 (1965), No. 1, 35-46.
- [3] Clark, C.E., Homomorphisms of compact semigroups. Thesis, Louisiana State University, 1966.
- [4] Cohen, H. and Collins, H.S., Affine semigroups. Trans. Amer. Math. Soc., 93

(1959), 97-113.

- [5] DeVun, E.E., Special Semigroups on the Two-cell. Pac. J. Math., 34 (1970), No. 3, 639—645.
- [6] Hildebrandt, J.S., On uniquely divisible semigroups on the two-cell. Pac. J. Math., 23 (1967), 91-95.
- [7] Hoffman, K. and Mostert, P.S., Elements of Compact Semigroups. Columbus, Ohio; Charles E. Merrill Books, Inc., 1966.
- [8] Whyburn, G.T., Analytic Topology. Providence, Rhode Island; American Mathematical Society Colloquium Publications, Vol. XXVIII, 1942.
- (1) For futher information concerning semigroup on N-cells one should see a new paper by Klaus Keimel, "Congruence Relations on Cone Semigroups", Semigroup Forum 3 (1971), 130—142.
- (2) This paper contains part of a doctoral dissertation written under the direction of professor Hankell Cohen.