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ON ASCOLI THEOREMS AND THE PRODUCT OF k-SPACES
By R.C. Steinlage

Let FCC(X,Y) be endowed with the compact open topology. If X is locally
compact and regular and if ¥ is a regular or uniform Hausdorff space, then the
Ascoli Theorems [6, pp. 233-236] give us necessary and sufficient conditions in
order that F be compact. Kelley [6, pp. 234,236] observes that the necessary and
sufficient conditions must be modified if they are to apply when X is a regular or
Hausdorff E-space. In this paper we show that the necessary and sufficient
conditions apply without modification when X is a k-space which need not be
regular or Hausdorff; in fact, we shall even use a definition of k-space which is
more encompassing than that used by Kelley.

1. Local compactness. We can define local compactuess of a topological space
X in several ways which in general are not equivalent.

DEFINITION 1.1 A space X is locally compact iff each x&X has at least one
compact neighborhood.

DEFINITION 1.2 A space X is locally compact iff each ¥&X has at least one closed
compact neighborhood.

DEFINITION 1.3 A space X is locally compact iff each neighborhood of each point
contains a compact neighborhood of that point.

DEFINITION 1.4 A space X is locally compact iff each neighborhood of each
point contains a closed compact neighborhood of that point, (thus the space is also

regular).

In Hausdorff or regular spaces the four definitions above are equivalent since a
locally compact (1.1) Hausdorff space is regular, [6, p.146]. Clearly

/(1.3)\
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Examples are available which show that none of the other possible implications
hold, [5,7].

2. k-spaces. We can also define k-spaces in two different ways.

DEFINITION 2.1. A topological space X is called a k-space if A is closed when
ANK is closed for every closed compact KCX.

DEFINITION 2.2, A topological space X is called a %-space if A is closed when
ANK is closed relative to K for every compact KCX.

Clearly the class of k-spaces (2.2) is larger than the class of k-spaces (2.1).
For example, give R the topology generated by the intervals (—oo,a) and let A=
(—o0,0]. A is not closed yet A meets each compact closed set in a closed set
since ¢ is the only compact closed set. Thus we do not have a k-space (2.1).
The sets of the form (—oo,a] are compact so that if a set B meets every compact
set in a relatively closed set, then B must be of the form [b, oo) and hence B
must be closed. Thus this space is a k-space (2.2). Note that this space is locally
compact (1.3) so that even local compactness (1.3) is not enough to imply the
equivalence of definitions (2.1) and (2.2).

LEMMA 2.3. Let X be a topological space in which the closure of every compact
set is compact. Then if ACX, the following are equivalent.

a) ANK is closed for every closed compact KCX.

b) ANK is closed relative to K for every compact KCX.

PROOF. b)—a) trivially. Assume that a) holds and that there is a compact
K*CX such that ANK* is not closed relative to K*. Then there is an x&Cl.,
(ANK*N(ANK#*). Note that x*&K* so that x&A. But K=CI(K*) is compact and
closed so that ANK is closed. Each neighborhood of x meets ANK* and hence
also meets ANK so that x&CI(ANK)=ANK. This contradicts the fact that x&A.
Thus a)—b).

Thus, we observe that the above definitions of k-space are cquivalent for any
space X in which the closure of every compact set is compact (e.g. in regular,
Hausdorff, or KC spaces [9]).

LEMMA 2.4. Every closed subset of a k-space (2.1) or (2.2) is a k-space (2.1
resp. 2.2).

THEOREM 2.5. A topological space X is a k-space (2.2) if each point of X has
a neighborhood which is a k-space (2.2). A similar result is obtained regarding
k-spaces (2.1) if we demand that the neighborhoods be closed.
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PROOF. Let C be a subset of X such that CNK is K-closed for every compact
KCX. Let xCI(C) and let W be a k-space neighborhood of x If KCW is
compact in W, then K is compact in X so that CNK is K-closed. Thus there is
a closed set C* such that CNK=C*NK. Then WNCONK=WNCHN(CNK) is
the intersection of a W-closed set with a K-closed set so that (WNC)NK is a
K-closed sct. Since W is a k-space (2.2) it follows that WNC is W-closed. But
since every neighborhood of z clearly meets WNC we have x&CI(WNC) so that
W NCIWNC) =Cl,(WNC)=WNC and hence x&C. Thus C is closed and X is

a k-space (2.2).

Observing that a compact space is always a k-space we obtain the following

corollaries.
COROLLARY 2.6, If X is a locally compact space, then X is a k-space (2.2).

COROLLARY 2.7. If X is a locally compact (1.2 or 1.4) space then X is a
k-space (2.1).

In fact, Corollary 2.6 is a special case of a result due to D.E. Cohen [2]
which says that a space is a k-space (2.2) if and only if it is a quotient space of
some locally compact (1.1 or 1.2) space. The analogous characterization of
k-spaces (2.1)-hopefully in terms of local compactness (1.3 or 1.4)-remains open.

LEMMA 2.8. Assume thal for any ACX, each point in CI(A) is the limit of some
sequence in A. Then X is a k-space (2.2).

PROOF. Let € meet cach compact subset of X in a relatively closed set. We
must show that C is closed. If x&CI(CO\C, let x=lim x, for some sequence x,&C.
K={x}U[x,:n=1,2,+} is compact and CNK= {x, i n=1, 2,--+} is not K-closed.
Thus CI(C)\C=¢ and C is closed.

COROLLARY 2.9. Every topological space salisfying the first axiom of countability
is @ k-space (2.2).

3. The product of k-spaces. It is known that the product of k-spaces nced not
be a k-space. Cohen (3] has shown that if X is a k-space (2.2) whose compact
sets are regular and if ¥ is locally compact and regular, then X <Y is a k-space
(2.2). Fundamental to Cohen's proof is a lemma of Whitehead [8]. Observing
that Whitehead's lemma can be proved under the weakened assumption that “each
peint in a saturated open set VCQ is contained in a saturated open set which is
contained in some compact subset of V”, we can strengthen Cohen's result to the
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following.

THEOREM 3.1. IfY is locally compact (1.3) and X is a k-space (2.2) whose
compact subsets are locally compact (1.3), then X XY is a k-space (2.2).

We will now eliminate the condition that the compact subsets of X be locally
compact.

LEMMA 3.2, Let X|.Y, be subsets of topological spaces X,Y respectively and let
CCX XY, be closed with respect to X, XY ,. Then if n, denoles projection into A,

i) ::X(C) is closed with respect to X, if Yl is compact

i) r:l,(C) is closed with respect to Y, if X is compact.

PROOF. See Dugundji [4] p. 228.

THEOREM 3.3. Let X be a k-space (2.2) and Y be locally compact (1.3). Thken
XXY is a k-space (2.2).

PROOF. The proof is patterned after that of Bagley and Yang [1]. Let C be a
subset of X x¥ which meets every compact subset K of X XY in a K-closed set.
Let (x,v)ECI(C), V be a compact neighborhood of ¥ and UCV ancther compact
neighborhood of y. Define =z, [CN({x} XV)] and S=z, [CNXXU)]. If Ais
any compact subset of X, then SNA=7,[CN(AXU)] is A-closed by the above
lemma since A and U are compact and CN(AXU) is therefore closed with respect
to AXU. Hence, S is closed since X is a k-space (2.2). If W is any neighborhood
of x, then WxU is a neighborhood of (x,%) and so CN(W xU)=¢. Then SNW
=14 [CN(WXU)]#¢ so that x=CI(S)=S5.

Using the above lemma again we see that T is V-closed. Then, since &S there
is a y*&UCV such that (x, y*)EC. Then y*&€UNT i i.e. UNT#¢ whenever UCV
is a compact neighborhood of y. Since Y is locally compact (1.3) it follows
that yCI(T)NV =Cl,(T)=T since T is V-closed. But then (x,»)EC and the proof
is complete. '

THEOREM 3.4. Let X be a k-space (2.1) in which each poin! has compact closure
(e.g. a T\-space) and let Y be locally compact and regular; i.e., locally compact
(1.4). Then X XY is a k-space (2. 1).

PROOF. In the above proof we consider only compact closed KCX XY, U, V, A
are to be compact and closed. As above we find that x&S.

Then Cl{x} XV is compact and closed so that CN(Cl{x} xV) is closed and hence
CN({x} xV) is closed with respect to {x} XV¥. Using lemma 3.2 we see that T is
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V-closed and hence closed. The proof continues as in 3.3.

4. Ascoli theorems. In this section C will denote the family of all continuous
functions from a topological space X to a topological space ¥. % will denote the
compact open topology for C. Recall the Ascoli theorems given in Kelley [6. pp
233, 236].

THEOREM 4.1. If Y is a Hausdorff uniform space, X is locally compact and
regular, and FCC, then F is compact in (C,%) if and only if

@) F is closed in (C,¥),

b) F(x) has compact closure for each xEX,

¢) F is equicontinuous.

THEOREM 4.2. If Y is a Hausdorff regular space, X is locally compact and
regular, and FCC. then F is compact in (C.€) if and only if

a) F is closed in (C, %),

b) F(x) has compact closure for each x&X.

¢) F is evenly coniinuous.

Kelley [6] observes that the above theorems hold true for Hausdorff or regular
k-spaces X provided we modify (c) to read: F is equicontinuous (evenly continuous)
on each compact subset of X. Bagley and Yang [1] observe that (4.1) and (4.2)
held true for Hausdorff k-spaces X with no modification whatsoever. In this
section, we show that the Ascoli Theorems (4.1) and (4.2) hold true for the
larger class of (2.2) k-spaces X with no modification. To do so, we need the
following lemmas.

LEMMA 4.3. Let X and Y be topological spaces such that X is Hausdorff or
regular or Y is regular. If  OF and (F, 9 )X is a k-space (2. 2), then T is

Jointly continuous.

PROOF. Let A be a closed subset of ¥. We are to show that 8_1(.4) is closed
in - FxX where e denotes the evaluation map from FXX into ¥. To do this it
suffices to show that K ﬂe_l(A) is K-closed for every compact KCFXxX. Let
M;Kﬂe_l(A). We are to show that if (f,2)EK and (f,x)&M, then (f, x)&
Cl (M); i.e., M is K-closed. If (f, x)EK\M, then (f, x)&e '(4). Let U=Y\4 and
K, be the projection of K into X. ThenU is open, f(x)EU, K, is compact and
xEK y. If X is Hausdorff or regular then K is regular and by continuity of f,
there is a closed compact neighborhood N of x in the space K x such that f(N)
CU. If Y is regular then there is a closed neighborhood U*CU of f(x): N=
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KyNrf “](U*) is then a closed compact neighborhood of x in the space K. In any
case x€N, N is compact, and f(N)CU. Now [N,U] = (g : g&€F and g(N)CU}lE
#FC.Z sothat [N,U] is a & -neighborhood of f and e([N,U] x N)CU. It follows
that ([N,U) XN)Ne (4 =¢: hence (f, 2)&Clg, , (M)=CUMINF*K 4)D Cl
(M)NK =Clg(M). Thus M is closed in the space K and the proof is complete.

LEMMA 4.4. Let X and Y be topological spaces such that X is Hausdorff or
regular or Y is regular. If X is a k-space (2. 2) and (F, &) is locally compact
(1.3), then & is jointly continuous.

PROOF. By Theorem (3.3), (F,%)xX is a k-space (2.2). The conclusion then
follows from the preceding lemma.

COROLLARY 4.5. Observe that if Y is Hausdorff or regular, we need only
assume local compactness (1.1) on (F, &) since the properties of Hausdorff separation
or regularily are carried over lo (F,%).

THEOREM 4.6. Let Y be a Hausdorff uniform space and X a k-space (2.2).
Then F is compact in (C.€) if and only if

a) F is closed in (C.%).

b) F(x) has compact closure for each x&X,

¢) F is equicontinuous.

PROOF. The proofs of this and the following theorems are the same as those of
Kelley [6, Theorems 7.17 and 7.21] since, by the above lemma, & is jointly
continuous.

THEOREM 4.7. Let Y be a regular Hausdorff space and X a k-space (2.2). Then
F is compact in (C, %) if and only if

a) F is closed in (C, %),

b) F(x) has compact closure for each x&X,

¢) F is evenly continuous.

University of Dayton
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