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ON THE SOLUTION OF AN INTEGRAL EQUATION INVOLVING
A KERNEL OF MELLIN-BARNES TYPE INTEGRAL

By S.L. Kalla

1. Introduction.

The object of the present paper is to obtain the solution of an integral equation
whose kernel S!J " ,(x) has a Mellin-Barnes type integral representation. As the
kernel used here is of general character, various integral equations involving
Whittaker functions, Bessel functions, Meijer's G-function, Fox's H-Function
ete. as kernels can be derived as particular cases. By the application of certain
operators of fractional integration, the kernel has been reduced to an exponential
function and consequently the transform will reduce to Laplace transform which
can be inverted by well known results.

. Integral equation.
We consider an integral equation over the interval (0, <o) as,
g =[17S,  Cawh(u)du )
where

S, (V=577 fc P()x ds @

and

ﬁ \j(ajlilf) II \/(b +BJ5) II \/(l-i-d Ds)
P(s) :J= P m, n;
RIS EITA
i 7
The following are the conditions of validity of (1):
(1) h(DEL,0,00):
Gi) x>0:
(iii) p and 7 are positive integers and ¢ is a non negative integer:
(iv) mj>0 for j=1,+-,q.
(v) nj->0 for j=1,-,r

(C)




94 S.L. Kalla

(vi) the contour ¢ is a straight line parallel to the imaginary axis in the

complex s-plane given by s:f;r—J.—z‘t, t being real and —oo<t<co and all the

poles of A/ ("f;““) for j=1,5,p and x (’_’Jffff) for =1, »+,q must lie to the
m.

i

left of ¢ while those of N/(deHDJS) for j=1, «, 7 to the right of it;

74
(vii) a'.;éaj.. i#j, i=1,+-, p. Similar conditions hold for all bj and cj,j-:l. ey g
and d}. and ey j=1,7.

The function Sp i will be represented as,

| (e By =+, (¢, B i (ey. D)), +++, (e,. D)
(x o
na.r

@
(ay, A), -+, (@, A); by, By, -, (b, B):(dy, D, (d,. D,)

In what follows for the sake of brevity (ap. Ap) represent the set of parameters
(@, A, -+, (8, 4.

3. The mellin transform.

The mellin transform of #(x) will be denoted by m{h(x)}. If m{h(x)}=H(s)
then we shall also use the symbolic expression h(x)=m—l{H(s)} where m~!
indicates the inverse mellin transform.

Formally we have

H(s)=m{h(0) = [ "¢ h(xdx (5)

1 1 c+ico . .
W@ =m H®) =57 [ H(x’ds. (6)
The simplest conditions are given in L,-space, which we shall use here.
If f(x)EL,(0,o0) and the Li.m. is with index 2 then

F&)=mif@) =Lim. [ @ "dz @
N
and also
F(EL,(-L-—ico, -L-+ioo) ®
If

then
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R +in
@O =m" F() =55 [ [ | P )
7t

and also f(x)EL,(0,0) [12,p.94].
4. Fraetional integration.

Several definitions of fractional integration have been given from time to time
by many authors including Kober [9], Erdélyi [2], Saxena [11], Kalla and Saxena
[6] and Kalla [7,8]. In our present investigation we shall require the following
operators of fractional integration defined by Erdélyi [2].

R, B:mh(x)=Hy® [Zyfomeem=tgmo ™ lyna (10

and
- —fa’ mat+m—1 a-1,8
St Bmh(xy=_a Pt [Lam_ e far  an

The conditions of validity of (10) and (11) are a>0, 8 ——é—. m>0 and
k()€ L0, ).

Under these conditions R(e, S8:m)h(x) and S(«, S:m)h(x) both bclong to
L, (0, o).

The mellin transform of these operators given by Erdélyi [2] are as follows:

NI/(_ﬁ-i—s )
m{R(er, B:mOh(x)) =— ' ™ ' mi{n(x)}, (12)
{ . _Bts
A (“ Ym
m(s(ex, B:m)h(x)} = (cf . -&_1_;)—)— mih(x)}. 13)
'V m

5. Preliminary lemmas.
LEMMA 1. If (i) x>0, (ii) k() and g(t) both belong to L,(0,c0),
(iii) m k(1)) =H(s), m{g(t)} =G(s) and G(s) is bounded on the line s:—2-—~{-z't.
—oot<oo, then

ﬁ:og(xt)h(t)dtel,z(o, o) (14)
and

m| ﬁf"g(z:)h(:)dz} =G()H(1—3) (15)

where the integrals of (14) and (15) are regarded as functions of x. This result
is due to Fox [4, p.458].
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LEMMA 2. If (D) x>0, (i) ¢;=0, j=1,+p (ii)5;>0,j=1,,¢ (iv) d;>0,
j=1,7 (V) h()EL,0,0), then

fUmSP.q.r(xt) h(t) dtEL,(0,0) 16
and

m{ [78y,q.,(xt) (D) dt) =P(HH(1-s) an

PROOF. We shall prove that
@ S, . ,(DELy0, o)

“p.a.r

1
2

From the asymptotic expansion of Gamma function [14, p.279] we sce that along

(b) m{S

».q.,(D} is bounded on the line s=—;-+it.

the line s:%-l-z't. —co ¢ <oo for large positive and negative ¢

| P(s)| =2]1|" exp(——5-anlt]) (18)
where 4 is a constant and
D M\ W ¥ o ik \ W A
et Bl RS ety
Py 1
b

Hence it follows that P(s) is bounded on the line s=%+:‘t for all values of ¢

and it belongs to L,(~3-—ie0, —5—-+ice). From (9) it follows that S, , belongs to

L, (0,00) and consequently
m{S, , (O} =P(s)

LEMMA 3. If £50, h()ELy(0,0),a>0, ¢>—-3-, j=1,,q, then

Ko 5] [y S0

= ﬂ)"“sp_ < r(m

PROOF. It is evident from Lemma 2 that the first integral of (19) belong to
L,(0,00) and thus we can apply the operator R to it. It is also true that the left

(c,_y»B,_1) i (¢, ta,B) i (e D)
(a, A (byBY i (d, D)

)h(u)du 19

hand side of (19) belongs to L,(0,%0) and therefore the operator m can be
applied to it by (7). Hence from (17) and (12) we obtain
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m[R( ,:q )f 2. (xu)k(u)du]
'\f (cq+qu)
"y
:\;“,TFBG ‘P(s)H(1-35)
m, m,

= (=] (cq—l' Bq—l)' (Cq+as Bq) : (er’ Dr)
G (a,A): (6, B, : (@, D) Jicwri (20)

The function in (20) operated upon by m, both belong to L,(0,0). Hence each

side of (20) belong to L, (ﬁﬁ—ioo. —L+z'oo) and so the operator m~! can be

applied to (20). Thus on applying m ! o (20) :+ the Lemma is established.
On proceeding in the same way, the following Lemma can be established easily.

1

LEMMA 4. If >0, h(x)EL,0,), A>0, (-%L)>%- g’.> 0, j=1,e7

j J
then

e—D +1 n oo
S(_ﬁ;, ;D'—, . I;,—)-[‘; Sp.q’r(xu)h(u)du

”t’ r

e (cpBpile,_y ,1)(e +8,D,) :
T o P S i S LS L

6. Solution of the integral equation.

If () dj—e>0: (Gj-D,-‘H)/D?"%, n>0, j=1,+7 (i) §;—¢>0, __>_,%_
m>0, j=1,,q GiD) g=j> =1, L3>3, p>0, j=L-p V) £>0
then the soluiion of the integral equalion

f ansp’ ¥ S h(u)du=g(x) (22)
is
) =p~ T my— AL [IIR(G_O D i1 :L)
P A A
G, m dj—e¢; ¢—D;+1  n;\  ax
JILR( m; '7le B; )jgls( n; S Df G 71);. )g( b )] (23

where L™ denotes the inverse Laplice transform and h(x)EL,(0, <o),
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PROOF. It is evident that both sides of (22) belong to L,(0,o0). Now applying
the operator

d—e e—-D41 »n
g
to (22), which is justified with the conditions stated, we obtain on using the
result (21) that
f W (cp By (e,_1. D, _y)
0 " “(‘”" (a, 4), (3, B,).(d,_,.D,_,)
=S( d’n_e’. e’—§'+l : ;;’ )g(x) €]

r r r

)h(u)du

The above integral equation may be regarded as a reduction formula for the
integral in (22).

Applying the operator S successively to (24) with d, replaced by d, _,,d,_,,
d, i e, replaced by e,_,,e,_, -, € i n replaced by #,_;, %, _o s %) and D, replaced
by D,_.D,_, -, D; we get

oo ("-'oB)
S ¢ q
fo P.q.O(’"‘ @, 4D, (5, Bq))k(u)du
r d—e e—D.+1 ",
= J 7 7 J .
IS —l HO (25)

Now applying the operator,

b—c ¢  m
R(2h 0 g0

to (25), which is also justified by the conditions stated, we get on using the
result (19) that
(cq-_.lv 1)

2. —1,0{ F
Jo™5 “lta, . cbq_l. B, )
di—¢; e-D+1

b.=c. it
e a q ]
m, ' B, B, );{IIS( A 'D—j)g(‘) e

The result (26) may also be regarded as a second reduction formula and thus
applying the operator R successively to (26) with & A replaced by &, _y, & g+ bn g
By m, replaced by My _1s My_ge sy We get

)h(u)du

=R(

and Bq replaced by "q_qu—-l'

S5 po0.o(x# | g e
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q b.—c. ¢. m, r ,d.—e;, e—D-+1 ”n,
= R, A ISt A I x 27

Now applying the operator

~B-D 5 .
B A

to equation (27) and using the result (19) we find that

\/'F(‘P——Lﬂ f omsp—l. o,o(x“ Im) h(u)du

=R( ap—(ﬁ—l) , p—1 p )}HR( (.‘ -i.—-cL)
i

b A Alj=1 m; 7
r d—e e—D+1 =
p S S et Sl
g5 n—x )eCo (28)

Applying this R operator successively to equation (28) with a, replaced by a,_,
Qy_gu=naly i P replaced by p—1,p—2,---,0 and applying the Legendre’'s multipli-
cation formula for the Gamma function [3,p.5] we find that

@) Fe-Dpy A~ f o exp( — =) k(u)du

- G=G=1 i1 . s\ Far b ¢ . m
AROS— ) BRCES. g

r  d.—e, e—DA1 n

;‘1=71( Jnj i = D; DJJ) g (29

which is equivalent to (23).
7. Particular cases.

If we set AgBlz---=Bq:Dl=---=D,=1. then the result (23) reduces to the

inversion formula recently given by Saxena [11,p.778].
(ii) For p=m=n;=1: i=1,+,q and j=1,-, 73 Sp s
Function [5, p.408] and the integral equation reduces to the following form:

(x) reduces to Fox’s H-

s : os C;
If (i) dj=¢>0.(¢;=DH1)/Dp> =5 =1 w7 (i) 4=e>0, >3- j=1,
)

oo g (iii) a,>0 (iv) x>0 (v) h(x) is a solution of the integral equation.

0o, g4 1.7 d,. D). (c, B
j; H:+r.q+r+1[

(@, ), G, B) ce,.D)]h(”) = g2 S
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which belongs to L,(0,00) then

M=) TAL (R(a,0: ) T R(bcp 52 L)
= ; /
r — D1
,-:ls(df-ef’ i}_l)j—l : _Il)_j )g(Ax)}

(iii) If we take Dy=+=D,=A=B,=+-=B =1 in the result (30) then H-function
reduces to Meijer's G-function [10] and on further puting =0 we obtain an
inversion formula given by Bhise [1].

It is interesting to mention here that the solution of various integral equations
involving Bessel function [10], Whittaker function [13] etc can be derived from
result (30) by giving special values to its parameters.
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