Kyungpook Math. ].
Volume 12, Number 1
June, 1972

EXTREMAL PROPERTIES OF p-FORMS ON A RIEMANNIAN MANIFOLD
By J.L. Schiff

1. In this note we deduce extremal properties of p-forms ¢ which satisfy the

differential eguation
¢h) 0dS¢p+ddTo+ PUp=0

on a Ricmannian space, where S,T,U are appropriately chosen operators and P
a smooth positive function. Work in this vein has recently been done by Kawai-
Sario [6], where the extremal properties of harmonic (A@=0), semiharmonic
(ddp=0), cosemiharmonic (dd@=0), quasiharmonic (dA@=0), and coguasiharmonic
(0Ap=0) forms has been systematically developed. Using their basic approach we
consider, P-harmonic forms (cf. Duff [2,3]), biharmonic and %-harmonic forms.

2, Let M be a Cm-Riemannian manifold of dimension 7. We denote by E’(M)
the vector space of smooth p-forms on M, d the exterior differential operator, and
% gP (M)—aE"“p (M) the Hodge star operator. Then the codifferential operator
d is defined by

do=(~D" " waxy, oeE'(M).
Also we have the relationship

*rp—(— Ve eEEN(M).

Let 2 be a regular subregion of M whose boundary is a éo ~hypersurface Q.
An inner product on p-forms can be defined on 2 by .

(a, 3) :fna/\*ﬁana(!‘l_"t")fg(l““l’)*l.

and the associated norm is given by llal>= (a, ). Then Green's formula, which
is of central importance, can be wrilten

€)) (do, @)~ (9. 0¢)= .ﬁm PN,

where ¢ is a smooth (p—1) form, and ¢ a smooth p-form.
We write fp and np for the tangential and normal components of ¢ on 2
respectively.
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3. In the sequel we shall restrict our attention to the relatively compact subregion

2, on which is defined a Cm~function P>0, and assume that all forms are suffi-
ciently smooth on 2. We constru t a generalized energy integral

(3 [0, 3] =(dSep,dS¢y) + (dTp, dTY) +(PUg, Ug),
and corresponding norm I‘lrpfflzz [, ). The essence of our argument lies in the
method of orthogonal projection given in the following form.

PROPOSITION 1. If ¢ is a p-form, then among all p-forms ¢ with 1=¢—¢ such
that [n,¢] =0, ¢ minimizes the funciional
Ll 2= (dS¢, dSP) + (0T, 0T ) + (PUP, Ug),
that is,
gl %= 1l 12+ Liml
Developing the inner product in (3) with p=¢—¢, we obtain by Green's formula
(7, ¢) =(dSn, dS¢)+(@Tn, dTe)+(PUn, Up)

=(Sn, 0dSp)+[ , SIARdSp+-(d0Tg, T1)

- fma'_rqa/\*Tm (PUR, Ug).
Therefore
€Y (m, @] = (S, 0dSp) +(T'n,diTy) +Un, PUp)
# f SnA¥dSp—dTo AXTT.
an

The approach taken here, utilizing the operators S, T, and U, being more
general than that in [6], permits us with the aid of Proposition 1 and (4) to
deduce directly all the extremal properties which have been developed there. As
an illustrative example, take S=1, T=0, and U=0. Then equation (1) becomes

ddp=0, i.e. @ is a semiharmonic form. Moreover (4) reads

(7, ¢) = (7, 9dg) + fa KA

= f nA¥*do.
a0
From Proposition 1 we maintain (Kawai-Sario [6]):

THEOREM 1. If ¢ is a semiharmonic form, then among those ¢ such thai tp=tp
on 02, ¢ minimizes (d¢, dgﬁ):[!dqﬁflz.

Since a coclosed harmonic form ¢ (Ap=0 and Jdp=0) is clearly semiharmonic,
and Duff [4] has established the existence of a coclosed harmonic form ¢ having
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preassigned boundary values of ¢, we obtain (Kawai-Sario [6]):

COROLLARY 1. Among all p-forms ¢ with given boundary values t¢, there is a
Sform ¢ which minimizes ||d¢||, and ¢ is a coclosed harmonic form.
Next, let S=7'=U=1I. Then (1) becomes
(5) Agp+Pp=0,
where A=dd+dd is the Laplace-Beltrami operator. A solution of (5) is called a

P-harmonic form. In view of (5),

(n, ¢ = (1, 3de) +(n, d3p) + (1, Pp) + fa IARIp=0p A
=[ npxdo—donen.
aQ

THEOREM 2. If ¢ is a P-harmonic form, then among forms ¢ such that to=1id,
no=np on 0Q, ¢ minimizes the energy integral for forms,
Igll1°= E(@)=(d¢, dp)+ (0, )+ (P, b).
Explicitly,
E@)=E@+EQ) where n=¢—o.

For functions, we refer to Kwon-Sario-Schiff [7,8].

REMARK. The existence and uniqueness of a p-form ¢ satisfying (5) and with
given boundary values of p=fp+np was established by Duff [2].

4. Denote by & the space of p-forms with finite energy integral, and by & p the
subspace of P-harmonic forms, with &, the subspace of forms ¢ such that ip—=np
=0, In view of Theorem 2 and the Remark, the fcllowing orthogonal decomposi-
tion obtains:

E=6,086,.
5. We next choose S=T=A=dd+dd, U=0. Then (1) takes the form

(6) Agtp:().
that is, ¢ is a biharmonic form.

THEOREM 3. If ¢ is a biharmonic form, then among forms ¢ such that tAgp=iAp,
al¢p=nldgp on 00, @ minimizes the Dirichlet z'ntegr.a! for forms,
D(Ag)=(dAg, dAg) + (FAP, FAP).

PROOF. Rewriting (4) we have
[n, 9] =(An, ddA¢)+-(An, doAp)
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+ f ApnxdAp—dAp A¥An
aQ

= f ApAEdA@—GAp ARAT,
ag

and the theorem follows. For functions, sce Garabedian [(5].
Finally, consider S=T=A"1, k=1, 2, 3, -, U=0. Then (1) is now
Akga:l).
l.e. ¢ is a k-harmonic form.

A

THEOREM 4. If ¢ is a k-harmonic form, the among forms ¢ with {Ak"lwz
tAk_lg“-. nA* 'lc,.’?--nAk_lrp on 02, @ minimizes the Dirichlel integral

DA =0 g an ') +@a* g, a8 ).
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