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A NOTE ON THE GEOMETRIC MEANS OF ENTIRE FUNCTIONS
OF TWO COMPLEX VARIABLES

By A.K. Agarwal

1. Let
fapa)= 3 a2,
- &, k=0 "

be an entire function of two complex variables 2z, and z,, holomorphic for
|z,|<r, t=1,2. We know that the maximum modulus of f(z,,2,) for |z,|<7,
(t=1,2) is denoted as

M(r,ry))= max |f(z,2)], t=1,2

lz, <7,

The finite order ¢ of an entire function f(z,2,) is denoted as ([1], p.219)
loglog M(ry, 7))

lim : =o.
7y, Pg—00 log(rlrz)

The geometric means G(r,,7,) and g,(r;,7,) of the function [f(z},2,)| for
lz,| <7, (¢=1,2) have been defined as ([2])

2z 2z

0. b,
(1.1 G(ry, rp)=exp {(2::)2 f f 10glf(r1e’ ,rzele)ldﬂldoz]
0o 0

and
r

2 n "
(lo 2) gk(rl. f2)=exp{—(5+—1k)_—1f f (xlxz) }Og G(xlj xz)dxldxz}p
(ry75) 0 0

where 0<k<oo,

In this note I have investigated a few properties of the above defined geometric
means.

2. Let o(ry,7,) be a “slowly changing” function: that is ¢(r},7,)>0 and conti-
nuous for r1>r?. r2>rg and for every constants m, n>0, @(mr), nr,)~¢(r, r,)
as r, or 7, or 7, and 7, tend to infinity.

Also let us set
sup log G(r,7y)

m ) =
rur—oo inf () o(r,7,)  d

@1)

(0<d<c<)
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. log g.(r,,7,)
2.2) lim Sup_"° SaMp 72l _p (0<g<p< o).
r.rs—oo Inf (’1’z)p€f’ ("1- "2) q =

In my earlier paper ([2]). I have proved the following result:
If f(z).2,) be an entire function of finite nonzero order p, then

_ kt1
k+p+1

Now I intend to prove the following theorems:

(2.3) [ ]gdSqug[ .- . }2.:.

k+o+1

THEOREM 1. Let f(z),2,) be an entire function of order o, then

(L2 i log g,(ry. 7)) [l 12
k+p+1 ([ _rl_f.--m IOg G(ri' rz) == k+p+1 d *
PROOF. From (2.1) and (2.2), we obtain

g-¢ 18 &lrp7) _ pie
c+e log G(ry.7,) d—c"*

Taking limits and using (2, 3), the result follows.
COROLLARY. If c=d, then
(k+ 1)210g G(ry, ro)~(k+p+1) %log &,(r 7).
THEOREM 2. Let f(z,,2,) be an entire function and if 0<r <R, 0<r,<R, then

@9 (RRY"!

= ()" Nog Glr ) <{(RRD* log g,(R, Ry
—(ryr)* log gy (r, D} <{RRYMH = (r17)* Y log G(R. R))

PROOF. Since G(r),7,) is an increasing function of », and 7, therefore from
(1.2) we have

(R\R) og g,(Ry. Ry)—(ryr)" llog g,(ry, 7y

R, ﬂ_', "

=(k+1) 2[ f f - f f }(xlxz)jlog G(x), x,)dxdx,
00 00

<{RRY '~ (ryrp)' 'Ylog G(R,, Ry).

Also
(R\R)  log g, (R, R)—(rir)" log g,(ry.7y)

re

By By r
:(kH)z[ f f - f f } (x,3) log G(xy, x)dxdx,
00 00
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> {RRY T =)t log Gry 7.

Hence the result follows.

COROLLARY. if p (0<n<1) is a constant, then
{es )

. (g, (Bry, Br))*
li ek =0.
- [ gi(rl' rz) ]

ry,ry—0o

Putting r,=8r, r,=pr, and R|=r|, R,=r, in (2.4) and taking the limit the
result follows.
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