ON NORMS OF MULTILINEAR SYMMETRIC OPERATORS

By Yu-Lee Lee, F.R. Miller, W.D. Curtis and Henderson C.H. Yeung

Let E and F be Banach spaces and let $L_s^r(E,F)$ denote the Banach space of continuous r-linear symmetric operators with the operator norm

$$|\cdot|: L_s^r(E, F) \rightarrow R$$

 $|A| = \sup_{|z_1| < 1} |A(z_1, \dots, z_r)| \text{ for } A \in L_s^r(E, F)$

Define a function $| \cdot |_1 : L_s^r(E,F) \to R$ by

 $|A|_1 = \sup_{|z| \le 1} |Az'|$ for $A \in L_s^r(E, F)$, where z' denotes the r-tuple (z, \dots, z) .

It is clear that the norm properties are satisfied:

$$|A|_1 \ge 0$$
,
 $|A+B|_1 \le |A|_1 + |B|_1$

and $|\lambda A|_1 = |\lambda| |A|_1$ for $\lambda \in \mathbb{R}$, A, $B \in L_s^r(E, F)$.

To see that $|A|_1=0$ implies A=0, we define the map $\varphi: E\to F$ by $\varphi(h)=Ah'=0$, and consider $A=\overline{A}(0)$ where $\overline{A}: E\to L_s'(E,F)$ given by $\overline{A}(z)=A$ for $z\in E$. Then by the converse of Taylor's theorem [1] [3], it follows $\overline{A}=D'\varphi\equiv 0$. Hence A=0.

We note that A is completely determined by its values on the diagonal. For if $Az^k = Bz^k$ and A, $B \in \mathcal{L}_s^r(E, F)$ for every $z \in E$, then $|A - B|_1 = 0$ and consequently A - B = 0, i.e. A = B.

We wish to show that these two norms are equivalent. To prove this, we need the following theorem [2] which can also be used to prove that $|A|_1=0$ implies A=0.

THEOREM. Let γ be a non-negative real number. Let E and F be Banach spaces and U an open subset of E. Let $f: U \rightarrow L_s^k(E, F)$. If there exists constants a, b > 0 such that $f(y)z^k = 0(z^{k+\gamma})$ for a|y| < |z| < b|y| and $z, y \in E$, then $f(y) = 0(y^{\gamma})$.

THEOREM. The norms | | and | | are equivalent.

PROOF. Clearly, $|A|_1 \le |A|$. Therefore, it suffices to show a sequence $\{A_n\}$ in $L_s^r(E,F)$ converging to 0 relative to $|\cdot|_1$, also converges to 0 relative to $|\cdot|_1$. Define a function

$$f: U \rightarrow L_s^r(E, F)$$
 by
$$f(x) = A \text{ for } x \neq 0,$$

$$\left[\frac{1}{|x|}\right]$$
 and $f(0) = 0$

where U is an open disk of radius 1, and $\left[\frac{1}{|x|}\right]$ denotes the largest integer contained in $\frac{1}{|x|}$. Choose any a,b with b>a>0, then for a|x|<|z|<|b|x|

$$|f(x)z'| = |A_nz'| = |A_n\left(\frac{z}{|z|}\right)^r |z|'$$
 where $n = \left[\frac{1}{|x|}\right]$.

Noting that $\left|A_n\left(\frac{z}{|z|}\right)^r\right| \leq |A_n|_1$, $n\to\infty$ as $z\to0$, and $|A_n|_1\to0$, we have f(x)z'=0(z').

By the preceding theorem, we see immediately that f(x) = 0(1), that is $f(x) \to 0$ as $x \to 0$ relative to the standard norm $|\cdot|$. Hence $f(\frac{1}{n}) = A_n \to 0$ as $n \to \infty$ relative to $|\cdot|$.

Kansas State University

REFERENCES

- [1] R. Abraham and J. Robbin, Transversal Mappings and Flows, W. A. Benjamin, 1967.
- [2] Yu-Lee Lee and Henderson C.H. Yeung, Estimation of symmetric operators in Banach spaces, (to appear).
- [3] E. Nelson, Topics in Dynamics, I: Flow, Math. Notes, Princeton University Press, 1969.