THE STRUCTURE OF A CLASS OF REGULAR SEMIGROUPS

By R.J. Warne

We describe the structure of regular semigroups in which the idempotents form a semigroup (variously termed orthodox [3] or strictly regular semigroups [12]) modulo \mathscr{L} -unipotent semigroups (semigroups in which each \mathscr{L} -class (\mathscr{L} is Green's relation) contains precisely one idempotent) and bands of rectangular bands (this gives a finer description than a description mod bands) (theorem 8). The structure of \mathscr{L} -unipotent semigroups was given mod inverse semigroups and semilattices of right zero semigroups in [10] and special classes of \mathscr{L} -unipotent semigroups have been structured more finely (see for example [7], [8], and [9]). In [11], we gave a structure theorem for generalized \mathscr{L} -unipotent semigroups (regular semigroups whose set of idempotents E satisfy the condition: $e, f \in E$ and ef = e imply gegfe = ge for all $g \in E$). A second structure theorem (mod \mathscr{L} -unipotent semigroups and bands of left zero semigroups) for these semigroups is given here as a corollary (corollary 9) to theorem 8. Yamada [12] gives another structure theorem for regular semigroups in which the idempotents form a semigroup.

Unless otherwise stated we use the definitions and notation of [1]. Let us first state the structure theorem for \mathscr{L} -unipotent semigroups. Let X be an inverse semigroup with semilattice of idempotents Y, and let E be a semilattice Y of right zero semigroups $\{E_y:y\in Y\}$. Let $r\to\alpha_r$ be a mapping of X into \mathscr{F}_E , the full transformation semigroup on E, subject to the conditions $\mathrm{I}(a)$ $E_y\alpha_r\subset E_r-1_y$, (b) if $g_x\in E_x$ and $h_y\in E_y$, $(g_xh_y)\alpha_r=(g_x\alpha_y)(h_y\alpha_r)$; If $\alpha_t\alpha_z\rho_e=\alpha_{tz}\rho_e$ for all $e\in E_{(tz)}-1_{tz}$ where ρ_e is the inner right translation of E determined by e. Let (X,E,Y,α) denote $\{(s,g_{s^{-1}s}):s\in X \text{ and } g_{s^{-1}s}\in E_{s^{-1}s}\}$ under the multiplication $(s,g_{s^{-1}s})(t,h_{t-1})=(st,(g_{s^{-1}s}\alpha_t)h_{t-1})$.

THEOREM 1. (Warne, [10]). S is an \mathcal{L} -unipotent semigroup if and only if $S \cong (X, E, Y, \alpha)$ for some collection X, E, Y, α .

In lemmas 2—7, S will denote a regular semigroup whose set of idempotents form a semigroup. If $a \in S$, $\mathscr{I}(a)$ will denote the collection of inverses of a. A congruence ρ will be termed \mathscr{L} -unipotent if S/ρ is an \mathscr{L} -unipotent semigroup.

 \mathcal{R} , \mathcal{L} and \mathcal{D} will denote Green's relations. If A is a semigroup, E_4 will denote the set of idempotents of A.

LEMMA 2. Let $\rho = \{(a,b) \in S^2 : a = su, b = sv \text{ for some } (u,v) \in \mathcal{L}, \mathcal{I}(u) = \mathcal{I}(v), s \in S^1\}$. Then, ρ , the transitive closure of ρ , is the smallest \mathcal{L} -unipotent congruence on S.

PROOF. By [3, theorem 3], $\{(a,b) \in S^2 : \mathcal{J}(a) = \mathcal{J}(b)\}$ is a congruence on S. Thus, it follows from [2, lemma 10.3] or directly that ρ^t is a left congruence on S, and, hence, clearly, ρ^t is a congruence on S. By [5:1, p. 129, Ex. 1], E_s is a semilattice Ω of rectangular bands $\{E_\alpha : \alpha \in \Omega\}$. Let $X_\alpha = E_\alpha \rho^t$ and let $x, y \in X_\alpha$ with $x = e \rho^t$ and $y = f \rho^t$ for some $e, f \in E_\alpha$. Since ef e = e and f e f = f, $\mathcal{J}(e) = \mathcal{J}(f)$ $(e \in \mathcal{J}(e) \cap \mathcal{J}(f)$ implies $\mathcal{J}(e) = \mathcal{J}(f)$ by [3, theorem 2]) and, hence, $\mathcal{J}(ef) = \mathcal{J}(f)$. Thus, $(ef, f) \in \mathcal{J}$ implies $(ef, f) \in \rho^t$ and, hence, xy = y. Since $(e, f) \in \rho^t$ implies $\mathcal{J}(e) = \mathcal{J}(f)$, $X_\alpha \cap X_\beta = \phi$ if $\alpha \neq \beta$. Thus, since $E_S \rho^t = E_{S/\rho} t$ ([4, lemma 2.2]), $E_{S/\rho} t$ is the semilattice Ω of right zero semigroups $\{x_\alpha : \alpha \in \Omega\}$. Hence, ρ^t is an \mathcal{J} -unipotent congruence by [10, proposition 5]. Finally, let δ be an \mathcal{J} -unipotent congruence on S. If $(u,v) \in \mathcal{J}$ and $v' \in \mathcal{J}(v) = \mathcal{J}(u)$, then $uv' \in E_S$, $(uv',vv') \in \mathcal{J}$ and, hence, $(uv',vv') \in \mathcal{J}$ or $(u,v) \in \delta$. Thus, $\rho^t \subset \delta$.

For brevity, we let $\lambda = \rho^t$ and $X = S/\lambda$. Thus, if $\lambda_s = s\lambda^{-1}$ for $s \in X$, $\{\lambda_s : s \in X\}$ is the collection of λ -classes of S and $\lambda_s \lambda_t \subset \lambda_{st}$. If $s \in E_X$, let $E_s = \lambda_s$.

LEMMA 3. E_S is the band E_X of rectangular bands $\{E_s: s \in E_X\}$.

PROOF. By [4, lemma 2.2], $\{E_s:s\in E_X\}$ is the collection of λ -classes that contain idempotents. Since $e,f\in E_s$ imply $\mathscr{I}(e)=\mathscr{I}(f),\ E_s\subset E_S(f\in\mathscr{I}(e))$ and $e_t\in E_S$ imply $f\in E_S$ by [6, lemma 1.3]). Since $(e,f)\in\mathscr{L}(\in E_S)$ implies $(e,f)\in\varrho$, E_s is a union of \mathscr{L} -classes of E_S .

For each $s \in X$, select precisely one $s' \in \mathcal{I}(s)$. If $s \in E_X$, let s' = s.

LEMMA 4. $\lambda_p \subset \bigcup (L_f : f \in E_{p/p})$

FROOF. If $x \in \lambda_p$, $x \in R_e \cap L_f$ for some $e, f \in E_S$. Hence, by the proof of [1, theorem 2.18], there exists $x' \in R_f \cap L_e \cap \mathscr{I}(x)$ such that xx' = e and x'x = f. Thus, $x' \in \lambda_{p^*}$ for some $p^* \in \mathscr{I}(p)$ and $f \in E_{p^*p} = E_{p'p}$.

For each $s \in E_X$, select and fix an \mathscr{L} -class I_s of E_s and an \mathscr{R} -class J_s of E_s .

If $s \in X$, let u_s denote a representative element of λ_s . If $s \in E_X$, let $u_s = I_s \cap J_s$.

LEMMA 5. Every element of S may be uniquely expressed in the form $x=iu_s j$ where $i \in I_{ss'}$ and $j \in J_{s's}$.

PROOF. Let $x \in \lambda_s$. By lemma 3 and lemma 4, $(x,j) \in \mathscr{L}$ for some $j \in J_{s's}$. Since $u_{s'}u_s \in E_{s's}$, $x = xju_{s'}u_sj = (xu_{s'})(u_sj)$ by lemma 3. Since $xu_{s'} \in E_{ss'}$, $(xu_{s'},i) \in \mathscr{R}$ for some $i \in I_{ss'}$. By the proof of lemma 4, $(u_s,w) \in \mathscr{R}$ for some $w \in E_{ss*}$ where $s^* \in \mathscr{I}(s)$. Since $E_{s's}$ and E_{s^*s} are contained in the same \mathscr{D} -class of E_s , $x = i(xu_{s'})$ $wu_sj = iu_sj$. Suppose that $x = iu_sj = pu_tq$ where $p \in I_{tt}$, and $q \in I_{t't}$. Clearly, s = t. Since $(u_s,f) \in \mathscr{L}$ for some $f \in E_{s's}$ by lemma 4, $iu_s = pu_s$, and, hence, iw = pw and i = p. Similarly, j = q.

LEMMA 6. $I_sI_t \subset I_t$ if st=t and $J_sJ_t \subset J_s$ if st=s.

PROOF. Let $e \in I_s$ and $f \in I_t$. Thus, f = f(ef)f by lemma 3, and, hence, $(ef, f) \in \mathcal{L}(\in E_t)$ and $ef \in I_t$. For brevity, let $E = E_S$.

LEMMA 7. There exist mappings $(r,s) \rightarrow \alpha_{(r,s)}$ and $(r,s) \rightarrow \beta_{(r,s)}$ of X^2 into \mathscr{F}_E , the full transformation semigroup on E, defined by $u_r g_q u_s = g_q \alpha_{(r,s)} u_{rqs} g_q \beta_{(r,s)}$ where $g_q \in E_q$. We have

- $(a) \ E_q\alpha_{(r,s)} \subset I_{(rqs)(rqs)'} ; E_q\beta_{(r,s)} \subset J_{(rqs)'(rqs)}$
- $\begin{array}{ll} (b) \ \ z\alpha_{(s,t)}((z\beta_{(s,t)}r)\alpha_{(st,g)}) \! = \! (z(r\alpha_{(t,g)}))\alpha_{(s,tg)} \ \ \text{and} \\ (z\beta_{(s,t)}r)\beta_{(st,g)} \! = \! (z(r\alpha_{(t,g)}))\beta_{(s,tg)}(r\beta_{(t,g)}) \ \ \text{for} \ \ z \! \in \! E_{s'stt'} \ \ \text{and} \ \ r \! \in \! E_{t'tgg'}. \end{array}$
- $\begin{array}{ll} (c) \ (iu_{s}j)(pu_{t}q)\!=\!i((jp)\alpha_{(s,t)})u_{st}(jp)\beta_{(s,t)}q \ \ where \ i\!\in\!\!I_{ss'}, \ j\!\in\!\!J_{s's}, \ p\!\in\!\!I_{tt'}, \ q\!\in\!\!J_{t't}, \\ i((jp)\alpha_{(s,t)})\in\!\!I_{(st)(st)'}, \ \ and \ \ (jp)\beta_{(s,t)}q\!\in\!\!J_{(st)'st'}. \end{array}$

PROOF. The first part of the lemma and (a) follow directly from lemma 5. Applying the definitions of $\alpha_{(r,s)}$ and $\beta_{(r,s)}$ to " $(u_sz)(u_tru_g)=(u_szu_t)(ru_g)$ " and, then utilizing lemma 6 and lemma 5, we obtain (b). To obtain (c), consider $i(u_s(jp)u_t)q$ and, then, apply lemma 6.

Let X be an \mathscr{L} -unipotent semigroup with semigroup of idempotents Y and let E be a band Y of rectangular bands $\{E_y:y\in Y\}$ (By [10, proposition 5], Y is a semilattice of right zero semigroups). For each $y\in Y$, select an \mathscr{L} -class I_y of E_y and an \mathscr{R} -class I_y of E_y . For each $s\in X$, select an inverse s' of s such that $s^2=s$ implies s=s'. Let $(r,s)\to\alpha_{(r,s)}$ and $(r,s)\to\beta_{(r,s)}$ be mappings of X^2 into \mathscr{F}_E , the full transformation semigroup on E, subject to the conditions

$$\begin{split} &\text{[} \cdot E_{q}\alpha_{(r,s)} \subset I_{(rqs)(rqs)'} : E_{q}\beta_{(r,s)} \subset J_{(rqs)'rqs} \\ &\text{[]} \cdot z\alpha_{(s,t)}((z\beta_{(s,t)}r)\alpha_{(st,g)}) = (z(r\alpha_{(t,g)}))\alpha_{(s,tg)} \text{ and } \\ &(z\beta)_{(s,t)}r)\beta_{(st,g)} = (z(r\alpha_{(t,g)}))\beta_{(s,tg)}(r\beta_{(t,g)}) \text{ for } z \in E_{s'stt'} \text{ and } r \in E_{t'tgg'}. \end{split}$$

Let $(X, E, Y, I, J, \alpha, \beta)$ denote $\{(i, s, j) : s \in X, i \in I_{ss'}, j \in J_{s's}\}$ under the multiplication $(i, s, j)(p, t, q) = (i((jp)\alpha_{(s,t)}), st, (jp)\beta_{(s,t)}q)$.

THEOREM 8. S is a regular semigroup whose idempotents form a semigroup if and only if $S \cong (X, E, Y, I, J, \alpha, \beta)$ for some collection $X, E, Y, I, J, \alpha, \beta$.

PROOF. Let S be a regular semigroup whose idempotents from a semigroup and let $\lambda = \rho^t$ denote the congruence given in lemma 2. Let $X = S/\lambda$ and $Y = E_X$. Thus, X is an \mathscr{L} -unipotent semigroup by lemma 2, and $E = E_S$ is a band of rectangular bands $\{E_y : y \in Y\}$ by lemma 3. The mappings $(r,s) \to \alpha_{(r,s)}$ and $(r,s) \to \beta_{(r,s)}$ of X^2 into \mathscr{F}_E , satisfying I and II are given by lemma 7 ((a) and (b)). By lemma 5 and lemma 7 (c), $(iu_s j)\varphi = (i,s,j)$ defines an isomorphism of S onto (X,E,Y,I,J,α,β) . We next show that $T = (X,E,Y,I,J,\alpha,\beta)$ is a regular semigroup whose idempotents form a semigroup. We utilize I and the proof of lemma 6 to establish closure and II to establish associativity. Utilizing I, $E_T = \{(i,s,j) : s \in Y, i \in I_s, j \in J_s\}$ and, hence, E_T is a semigroup since Y is a semigroup. If $(i,s,j) \in T$, $k \in I_{s'(s')}$, and $n \in J_{(s')'s'}$, we obtain (i,s,j)(k,s',n)(i,s,j) = (i,s,j) by utilizing I.

In closing, we give a second structure theorem for generalized \mathcal{L} -unipotent semigroups.

Let X be an \mathscr{L} -unipotent semigroup with semigroup of idempotents Y and let E be a band Y of left zero semigroups $\{E_y:y{\in}Y\}$. For each $s{\in}X$, select an inverse s' of s such that $s^2{=}s$ implies $s{=}s'$. Let $(r,s){\to}\alpha_{(r,s)}$ be a mapping of X^2 into \mathscr{F}_E , the full transformation semigroup on E, and let $y{\to}f_y$ be a mapping of Y into E subject to the conditions

I'
$$E_q \alpha_{(r,s)} \subset E_{(rqs)(rqs)'}$$
: $f_y \in E_y$

I' $z\alpha_{(s,t)}((f_{(st)'st}r)\alpha_{(st,g)}) = (z(r\alpha_{(t,g)}))\alpha_{(s,tg)}$ for $z \in E_{s'stt'}$ and $r \in E_{t'tgg'}$.

Let (X, E, Y, α, f) denote $\{(i, s) : s \in X, i \in E_{ss'}\}$ under the multiplication $(i, s)(p, t) = (i((f_{s's}p)\alpha_{(s,t)}), st)$.

COROLLARY 9. (cf. Warne, [11]). S is a generalized \mathcal{L} -unipotent semigroup if and only if $S \cong (X, E, Y, \alpha, f)$ for some collection X, E, Y, α, F .

PROOF. Let S be a generalized \mathscr{L} -unipotent semigroup. By [11, lemma 1], S is regular and E_S is a semigroup. Utilizing [11, theorem 2 and lemma 3], each E_y in the statement of theorem 8 is a left zero semigroup.

University of Alabama in Birmingham Birmingham, Alabama, U.S.A.

REFERENCES

- [1] A.H. Clifford and G.B. Preston, *The algebraic theory of semigroups*, Vol.1 (Math. Surveys of the Amer. Math. Soc. 7, Providence, R.I., 1961.)
- [2] A.H. Clifford and G.B. Preston, *The algebraic theory of semigroups*, Vol.2 (Math. Surveys of the Amer. Math. Soc. 7, Providence, R.I., 1967).
- [3] T.E. Hall, On regular semigroups whose idempotents form a semigroup, Bull. Austral. Math. Soc. 1 (1969), 195-208.
- [4] M. Gerard Lallement, Congruences et equivalences de Green sur un demi-group regulier, C. R. Acad. Sci Paris 262 (1966), 613-616.
- [5] David McLean, Idempotent Semigroups, Amer. Math. Monthly 61 (1954), 110-113.
- [6] N. R. Reilly and H. E. Schieblich, Congruences on Regular Semigroups, Pacific J. Math. 23 (1967), 348—360.
- [7] R. J. Warne, E-bisimple Semigroups, Journal of Natural Sciences and Math. (W. Pakistan), 10, No. 2, October, 1970.
- [8] R. J. Warne, L-regular semigroups I, Kyungpook Math. Journal, 10, No. 2 (1970), 97 —103.
- [9] R. J. Warne, Simple L-regular semigroups, The Formosan Science, 24, No. 3-4, (1970), 71-77.
- [10] R.J. Warne, L-unipotent semigroups, to appear.
- [11] R.J. Warne, Generalized L-unipotent semigroups, to appear.
- [12] Miyuki Yamada, On a regular semigroup in which the idempotents form a band, Pacific J. Math., 33 (1970), 261-272.