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The main object of algebraic geometry is to study geometric properties

of algebraic varieties. An alg~braic variety V in an n-dimensional affine

space is the set of solutions of polynomial equations Ft (x) = =FT(x) =0,

where F;(x) =Fi(xt, ... , xn) are polynomials in the n variables Xl> •••• ,

xn• In order to get a more interesting and more powerful geomotry one

introduces the points at infinity and considers algebraic varieties in a

projective space. Then the equations take the form Gt(Y)=······=GT(Y)= 0,

where Gi(y) =G;(yo, ... ,Yn) are homogeneou3 polynomials in n+ 1 variables'

Yo, Yt> ... ,Yn'

Therefore one could say that algebraic geometry is just a higher-dimen­

sional coordinate geometry. But if one sticks to the coordinates too closely,

then one cannot go much further than the classical coordinate geometry on

the plane or in the 3-space in which varieties defined by equations of low

degrees were mainly considered, because in general the complexity of the

equations increases very rapidly with the number of the variables and the

degrees of the equations. So one needs more abstract viewpoint.

In the so-called abstract algebraic geometry the main tools are COmmuta-·

tive algebra (theory of commutative rings and fields) and homological'

algebra (sheaf theory etc.). When one considers varieties defined over

complex numbers, one can view them as complex analytic spaces and use

analytic and topological methods (harmonic integrals, several complex vari­

ables etc.).

Conversely, algebraic geometry can be used in other branches of mathe-
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matics. To take recent examples in analysis, Hironaka's resolution of real­

and complex-analytic spaces, and M. Artin's approximation theorem (of

formal solution of analytic equations by analytic solution), would not have

been possible without their knowledge of algebraic geometry, and Atiyah

applied resolution of singularities to division of distributions (C.P.A.M. 23,

1970).

I do not know the old stories very well, but Riemann in the 19th cen­

tury was perhaps the first man who considered birational geometry and

obtained significant results. Two algebraic varieties V and V' are said to

be birationally equivalent if there is a correspondence T between V and

V'such that, if PEV and T(P)=P'(£V' correspond to each other then

the coordinates of pI are rational functions of the coordinates of P and

vice versa. Thus T is one-to-one almost everywhere, except at the points

where some denominators of the rational functions vanish. Let K( V) denote

the field of rational functions of the coordinates on V (we assume that V

and V' are irreducible). Then a birational correspondence T: V-> V' induces

an isomorphism K( V) =::K( V') over the constant field C, and conversely

'Such an isomorphism between the fuction fields determines a birational

-correspondence.

When V has complex dimension 1, K(V) is a field of algebraic functions

-of one variable, i.e. a finitely generated field of transcendence degree 1

-over C. Riemann proved that such a field is determined by a Riemann

surface. More precisely, he found that

(1) the isomorphism classes of smooth projective algebraic curves,

(2) the isomorphism classEs of compact complex manifolds of dimension

1, and

(3) the isomorphism classes of fields of algebraic functions of one vari­

able are essentially the same. In the higher-dimensional case this is no

longer true. Two 1irationally equivalmt smooth algebraic surfaces may
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not be (biregulary) isomorphic, and there are compact complex analytic

surfaces which are not algebraic. Still the function field K( V) is yery

important.

After Riemann, Germann mathematicians in the 19th ce:1tury continued

to develop the theory of algebraic curves. :\Iax Noether (father of E:;lmy

Noether) investigated algebraic curves in a 3-dimensional projective Sl)3.ce

and made a huge list of classification of such curves. At the same time

he made some pioneering work on algebraic surfaces (Zur Grundlegung der

Theorie der algebraischen Raumkurven, 1883). In France Poincare and

Picard developed an analytic theory of algebraic surfaces. But a decisive

progress in algebraic geometry was done by Italian geometers such as Ber­

tini, Castelnuovo, Enriques and Severi from the end of last century to the

beginning of this century. They used divisors systematically to study hira­

tional geometry of algebraic surfaces.

In general, a divisor D on a smooth projective variety V of dimension

n is a linear combination
s

D=L:niWi
i=l

of irreducible subvarieties Wi of codimension 1 (i.e. of dimension n-l). A

divisor is said to be positive if all the coefficients are positive. Each rati­

-anal function 9 E K( n, 9~O, determines a divisor (<;0) = L:ni Wi - L:mj Tl"j,

where TVi is a zero of order ni and W'j is a pole of order 11Zj of 9. Two

divisors D and D' are said to be linearly equivalent (notation: D.......,D'), if

there exists 9EK(V) such that D-D'=(rp). A complete linear system L

= ID I is the set of the positive divisors which are linearly equivalent to

D:

L= {D'jD'.......,D, D'~O}.

1t has a natural structure of a projective space. A subset !II of a complete

linear system L is called a linear system if ,11 is a linear subspace of the

projective space L. Linear systems are associated with rational maps of V
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into a projective space in the following way. The set of the hyperplanes

{H} of a d-dimensional projective space Pd is a complete linear system.

and if F: V->Pd is a rational map of Vinto Pd then the pull-back {F-l(H) I
H:pF(V)} of the system {H} is a linear system on. V without fixed com­

ponents. Conversely. if M is any linear system on V, if dimM=r and if

Do. Dh _ •• , Dr are linearly independent elements of M with respect to its

structure as a projective space, then choose~;EK(V) (i=O. 1, ... , r; ~o=I)

such that Di-Do=(~i) and consider the rational map F:V->PT defined by

F(x)=(~O(X):~l(X):.• -: ~T(X)), Then F is determined by M up to projec­

tive transformations in Pro and the linear system {F-l(H)} is precisely the

linear system M' obtained from M by removing the fixed components from

each member of M If M' has no base points (=points belonging to all

divisors in the linear system), then the rational map F is everywhere­

regular. If P is a base point of M' then it is "blown up" by F. that is. it

corresponds to a subvariety of dimension ~ 1 of F(V).

Italian geometers used linear systems very effectively and developed a

quite original method. Combining it with analytic methods they obtained

classification of algebraic surfaces. But their tools were sometimes not

sharp enough to give a rigorous proof. Gradually their papers became un­

readable to the students, and the tradition of the Italian school came to­

an end in Italy. The necessary foundations of their method were built

later by v. d. Waerden. Chevalley, Weil and Zariski by using modern

algebra.

Now we come to the 20th century. Modern abstract algebra was founded

by Emmy Noether. Emil Artin and others in the twenties of this century.

In the theory of commutative rings E. Noether formulated the famous

ascending chain condition and laid the foundation of ideal theory of noe­

therian rings. She also defined the notion of specialization in algebraic geo­

metry. which was developed later by v.d. Waerden and Andre Wei!.
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The theory of noetherian rings was made big and powerful by the hands

of W. Krull in 1920-1940. Among other things he built the dimension

theory of ideals, showing the clos~ relationship between algebraic geometry

and noetherian ring theory. We will explain it in more detail.

Let k be an algebraically closed field, and let An be an affine space

over k of dimension n. Then there is a one-to-one correspondence between

the set of the prime ideals of the polynomial ring k[Xb ••• , XnJ and the

set of the irreducible varieties in An. (This is known as the zero-point

theorem of Hilbert.) Let K be an ideal of k[Xb •••• , XnJ and let h " . ,

~T be the minimal prime ideals containing I .. let Vel) denote the variety

of the zeros of L namely V(I) = {x EAn If(x) =0 for all fEn. Then V(I)

=V(VI) U ... UV(v,), and the right hand side gives the decomposition of

V(l) into the irreducible components.

In general, let R be a commutative ring and lJ a prime ideal. By the

-height of lJ, ht(lJ), we understand the maximum of the lengths of prime

chains in V : if lJ=lJO:::)lJI :::)· .. ···:::)lJm is a longest chain of prime ideals of R

contained in lJ then we put ht(lJ) =m. In the case of R=k[X1,.··, XnJ, ht(v)

is equal to the codimension of the variety V(lJ), i.e. ht(!') =n-dim V(lJ).

Krull proved the following fundamental

THEOREM. If R is a noetherian ring, if I=aIR+ ...... +amR is an ideal

generated by m elements and if lJ is a minimal prime ideal containing

I, then lzt(lJ»m.

Since lJ itself is gen2ratei by a finite numb2r of elements, the theorem

implies in particular that ht(\l) is always finite, so that the descending

chain coalition holds for the set of prime ideals in a noetherian ring.

Geometrically, the theorem translates the fact that, if you add one more

equation, then the dimension of the variety decreases by one at most.

From the ring R and the prime ideal V one constructs the local ri,lg Rv.

A noetherian ring is called a local ring if it has only on~ maximal ideal.



26 H. Matsumura

In the case R is an integral domain, R'fl is just the subring of the field of

fractions of R consisting of the elements alb such that b ~p. If R=k [Xl'

... , XnJ/ I and m is a maximal ideal correspoeding to a point P of V=

Vel), then Rm is called the local ring of the point P on the variety V, and

is denoted by Op or ov,p. It is simply the ring of the rational functions on

V which are regular at P. The local ring op determines the variety V in

the neighborhood of P, in the sense that if Oy.p=:Oy,.P' then a suitable

neighborhood U of P in V and a suitable neighborhood U' of P' in V' are

isomorphic. The same is true for analytic varieties if we take the local

ring of the analytic functions around the point.

Let R be a local ring, m its maximal ideal imd k=R/m. The module

EBic':omi/mi+1 has a natural structure of a graded ring containing the field

k, and as such it is denoted by gr(R). If m is generated by s elements then

gr(R) is a homomorphic image of k[ Yh ••• , YsJ.

The function q(lJ) =2;:0 dim (mi/mi + l ), where dim denotes the dimension

of vector space over k, is a polynomial in lJ for large values of lJ: q(lJ)

=aolid+allJd - I + ••• +ad (v>vo). This polynomial is called the Hilbert poly­

nomialof R. The degree d is equal to the dimension of R, i.e. kt(m). The

number e=d!ao is a positive integer and is called the multiplicity of the

local ring R. The theory of multiplicity based on this definition is due to

a later work of P. Samuel. When gr(R) is a polynomial ring over k, R is

called a regular local ring; geometrically it corresponds to a simple point

of a variety. Krull showed that regular local ring has many good properties

similar to the formal power series ring k[[Xt> ..• , XdJJ.

Krull also created the theory of general valuations, which has been

applied to algebraic geometry by Zariski and Nagata. Krull confined him­

self to commutative algebra and did not discuss algebraic geometry. But

his works inspired many algebraic geometers, and his theorems are at the

basis of algebraic geometry of today.
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It is Oscar Zariski who introduced modern algebra to algebraic geometry

in late 1930s. In Japan, Yasuo Akizuki started as an algebraist and studied

and generalized Krull's results, and turned to algebraic geometry partly

under the influence of Zariski and Weil. Both Zariski and Akizuki pro­

moted algebraic geometry in their countries, and they have had good stude­

nts. A. Seidenberg, 1. S. Cohen, S. Abhyankar, D. Mumford and M. Artin

were Zariski's students; T. Matsusaka, Y. Nakai and S. Nakano were

Akizuki's students, and ].-1. Igusa and M. Nagata were his young collegues.

Hironaka was first a student of Akizuki, and then of Zariski.

Before talking about Zariski we will briefly discuss the works of S.

Lefschetz and B.L. van der Waerden. In 1920s Lefschetz studied the topo­

logy of, and the integrals on, algebraic varieties, in particular algebraic

surfaces. His proofs were often too intuitive, but even today his works

continue to inspire mathematicians. His results have been given rigorous

proofs, and have been generalized, by Kodaira-Spencer, Akizuki-Nakano,

A. H. Wallace, Batt, Grothendieck and his collaborators, and others.

Lefschetz later turned to algebraic topology and, among other th-ings,

found his famous fixed point formula, which inspired A. Weil in his works

and conjectures about congruence zeta function!'.

Van der Waerden is One of the earliest who tried to provide algebraic

geometry with solid foundations. He proved the triangulability of real

or complex algebraic varieties and gave a topological foundation to the

so-called enumerative geometry. He proved the general Bezout theorem

by defining the intersection multiplicity geometrically. Moreover, the

notion of the "associated form" of an algebraic variety, invented by W. L.

Chow an:l v. d. Waerden, is of prime importance in the geometry in proje­

ctive spaces. But v. d. Waerden used projective method rather than the

advance:l ideal theory of Krull, and so his works were not revolution ary

and his book "Einfiihrung in die Algebraische Geometrie" (1939) faile d to
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arouse interest widely.

Oscar Zariski was born in Russia. studied in Italy and worked in United

States. At first he was a brilliant member of the Italian school and wrote

the famous survey book "Algebraic Surfaces" (Ergebnisse. 1935). Around

1936 he intensively studied Krull's works and suddenly changed from a

geometer to an ardent advocate of algebraic method in algebraic geometry.

He was not satisfied with giving algebraic proofs to known results; rather.

he used algebra to discover entirely new properties and to solve difficult

<lId problems.

He sh.owed the importance of normal varieties and defined the process of

normalization. A point P on a variety V is called a normal point if the

local ring Op is normal (i.e. is an integrally closed integral domain). A

variety V is said to be normal if every point is normal. Zariski showed

that. for any irreducible variety V, there exist a normal variety v* and

a regular birational map V*~V such that each point of V corresponds to

a finite number of points of V*. Such V* is unique up to isomorphisms

and is called the normalization (or the derived normal model) of V.

A normal variety has no singularities of codimension one. Moreover. Zariski

found that normal points have a very nice property with respect to bira­

tional transformations (the so-called Zariski Main Theorem).

Secondly. he applied successfully Krull's general valuation theory to the

theory of birational transformations. and in particular to the resolution of

singularities. In the weak form, resolving the singularities of a variety V

implies finding a projective variety which is birationally equivalent to V

and has no singular points. In the strongest form (proved by Hironaka in

1962) the "non-singular model" is to be obtained from V by a succession

of transformations of a particularly good type. Zariski solved the resolution

problem for dimension two. and then for dimension three (1944).

In 1943-45 C. Chevalley studied local rings. in particular their comple-
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tions, and defined intersection multiplicities of algebraic and algebroid

varieties. Let P be a point on an algebraic variety V and let o=op be its

local ring. When the ground field k is the complex number field. V is also

a complex number field, V is also a complex analytic space and 0 is a

subring of the ring oh of the holomorphic functions around P ; if V is

embedded in An and is defined by an ideal I of k[Xj , ••• , XnJ, and if P

is the origin (0, ... ,0). thenoh=k{X}/Ik{XI, where k{X} denotes the ring

of the convergent power series in X" ... , Xn• Let m be the maximal ideal

of o. Then the local ring 0 is a metric speace with respect to the m-adic

topology (the powers mi of m are taken as a fundamental system of nei'

ghborhoods of zero), and its completion 0 is a ring containing 0 and is

isomorphic to k[[XJJ/lk[[XJJ. we have cCohCb, and 0 is also the comp­

letion of oh with respect to the moh·adic topology. When k is an abstract

field oh has no meaning, but the completion 0 still has a meaning. In the

analytic case the completion 0 is very close to ok, and so it is used to

transport some analytic notions to the abstract case. Moreover, f) is ring­

theoretically simpler than 0 ; for example, if P and P' are simple points

on varieties V and V' of the same dimension d, then op and Opl are isom­

orphic (both::::k[[X 10 ... ,Xd]J) while Op and Opl are usually not isomorphic.

A prime ideal in k[[Xh ••. , XnJ] is said to define an algebroid variety.

Chevalley's theory of multiplicity was simplified by P. Samuel in his thesis

(1951) using Hilbert polynomials. Also Zariski made important contributions

to the theory and application of completions and we shall come back to

this later.

Andre Weil' s epoch-making book "Foundations of Algebraic Geometry"

was published in 1946. This book was algebraic, self-contained and rigorous.

Algebraic geometry over an arbitrary ground field (in particular over a

field of characteristic p) had never been discussed with such thoroughness.

Weil developed an intersection theory with special attention to the case of
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characteristic p. Also, the notion of abstract variety (obtained by piecing

affine varieties together) was introduced in this book for the first time ;

so far only projective and affine varieties had been considered. The exist­

ence of complete non-projective varieties was proved later by Nagata.

Wei! is above all a number theorist. He saw that Severi's theory of alg­

ebraic correspondence between algebraic curves would lead to a proof of the­

Riemann hypothesis for curves over finite fields. In order to establish

Severi's theory in characteristic p he had to write Foundations. The func­

tion fields of algebraic curves over finite fields have similar properties with

algebraic number fields, and their arithmetic properties had been investig­

ated by E. Artin, F. K. Schmidt, H. Hasse, M. Deuring and others. In

particular Hasse prove:! the Riemann hypothesis (about congruence zeta

functions) for curves of genus I in 1936. The complete proof of the gen­

eral case, by Wei!, appeared in his second book "Sur les courbes algebriq­

ues... " (1948) which treated the theory of correspondences. In the third of

the triplet, "Varietes aheliennes et courbes aIgebriques" (1948), he built

the abstract theory of abelian varieties, whieh has become an importan t

tool of abstract algebraic geometry. Wei! declared himself to stand in the

tradition of Kronecker (as opposed to that of Dedekind); not only he aimed

at the unification of algebraic geometry and number theory, but also he

employed very skillfully the Kroneckerian technique of using indeterminates.

For ten years or more after 1946, many algebraic geometers wrote papers

in Weirs language, quoting his theorems. But few could master his tech­

nique, and new methods of ideal theory and of homological algebra have

gradually taken over the methods of Weil.

In the analytic and the topological theories, Hodge's harmonic integral

(1941) and Leray's sheaf cohomology have become powerful tools in alge­

braic geometry. K. Kodaira, D. C. Spencer, ]. -Po Serre and F. Hirzebruch

successfully applied these methods to the proof of classical theorems of
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Lefschetz and others, to various generalizations of the Riemann-Roch theo­

rem, to finding new invariants of complex manifolds and to the classifi­

cation of (algebraic as well as nonalgebraic) compact complex surfaces.

J.-P. Serre introduced sheaf theory and homological algebra in abstract

algebraic geometry. His FAC (=Faisceaux Algebriques Coherents, Ann.

of Math. 61, 1955) marked a new epoch. In this work an algebraic variety

over an algebraically closed field is viewed as a ringed space, i. e. a

topological space (with respect to the Zariski topology in which the only

closed sets are the subvarieties) with a sheaf of local rings. Classical

invariants such as arithmetic genus are shown to be of cohomological

nature. In another famous paper GAGA C=geometrie algebrt"que and geo­

metrt'e anal)'tique) he proved that, for projective varieties over the complex

number field, the theory of analytic coherent sheaves and the theory of

algebraic coherent sheaves are essentially the same. He also gave a coho­

mological characterization of regular local rings, expressed intersection

multiplicity as the Euler-Poincare characteristic of the Tor groups, and

defined the important notion of flatness.

Serre's work was immediately generalized by A. Grothendieck to the

grandiose theory of schemes (cf. his talk in Proe. Intern. Congr. Math. 19

58). Take an equation f(X/, ... , X n ) =0 with coefficients in a commutative

ring k. One can fix a commutative k-algebra B which is large enough

for one's purpose and look for the solutions of f(X) =0 with coordinates

in B. Alternatively, O!1e may consider solutions in various B. In the latter

viewpoint the equation defines, so to speak, a frame in which one may

put various pictures. More precisely, put A=k[X/, ... , XnJ/(f). Then the

solutions with coordinates in B correspond to the k-algebra homomorphisms

A--->B. Thus we get a covariant functor B->X(B) =Hom k-algebTaCA, B). This

functor is an affine scheme (over k). In general, any commutative ring A

defines an affine scheme B--->Hom(A, B). To be more geometric, one defines
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an affine scheme spec (A) as the ringed space of which the underlying

topological space is the set of the prime ideals in A with Zariski topology

(the sets D(a) = {p E spec (A) Ia 6; p}, a E A, forming a base of the topology)

and the structure sheaf 0 is such that the stalk over a point p is the local

ring Ap. The morphisms from Spee(B) to Spee(A) is defined to be the

morphisms as local-ringed spaces. Then it turns out that there is a funct­

orial isomorphism

Hom (Spec (B) , Spee(A)) :::: Hom (A, B).

A scheme is defined to be a ringed space each point of which has an open

neighborhood isomorphic to an affine scheme.

Thus the notion of a scheme is quite general. One important feature is

that the structure sheaf may contain nilpotent elements~ this is useful

when one considers infinitesimal structure, and sometimes it enables one to

use the method of successive approximation in abstract algebraic geometry~

moreover, the fibre product (which is given by tensor product of rings in

the case of affine schemes) can be used as a convenient substitute for the

intersection product of Weil in many cases, which cannot happen if nilpo­

tent elements are banned from the structure sheaf.

The generality of the notion of scheme also allows one to consider

geometry over a ring instead of a field. Unification of number theory and

algebraic geometry, once dreamt of by Kronecker, is partially realized by

scheme theory so long as archimedian valuations can be neglected.

Grothendieck has brought in algebraic geometry many other revolutionary

ideas, the impact of which are felt in other branches of mathematics also.

The most salient feature is his functor-theoretic approach. For instance he

gave a completely new formulation to the Riemann-Roch-Hirzebruch theo­

rem (edited by Borel-Serre, 1958), introducing a new functor K(X) , which

was subsequently developed by topologists into the so-called K-theory or

extraordinary cohomology. He also gave a new construction of the Picard
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variety by considering the Picard functor, which, in the words of S. Lang,.

marked the first complete separation from the tradition of the Italian

school.

The problem of moduli for curves of given genus g is to find a good

parametrization of the set of the isomorphism classes of non-singular

algebraic curves of genus g. Already Riemann considered the problem and

found that the correct number of parameters is °for g=O, 1 for g=l and

3g-3 for g>1. After an important but incomplete work of Severi, D.

Mumford succeeded in constructing a good moduli scheme for such curves

(Geometric Invariant Theory, Ergebnisse 1965). On the other hand, the

similar problem for higher-dimensional compact complex manifolds was

treated for the first time by a great work of K. Kodaira -D. C. Spencer

as the problem of deformation of complex structures (Ann. of Math. 1958),

the influence of which can be seen in Grothendieck's EGA also. If V is a

compact complex manifold and 0 is the tangential sheaf of V( =the sheaf

of germs of holomorphic tangent vectors), then the first approximation of

the set of small deformations of V is given by Hl(V, fJ); M. Kuranishi

proved the existence of the local deformation space for V(Ann. of Math.

1962), the dimension of which is in general ~dimf/1(V, 0). The similar

local problem in the case of algebraic schemes with singularities has been

successfully investigated by D. S. Rim (to appear in Publ. I.H.E.S.). Let

me remark that HO( V, 0) (=the vector space of the global tangent vector

fields on V) is the tangent space at the automorphism group scheme Auf

(V), which was constructed by F. Oort and myself. Automorphism is much

easier than deformation.

In the recent development I will mention the namES of three distingui­

shed disciples of Zariski, namely D. Mumford, H. Hironaka and M. Artin

(son of Emil Artin), and a differential geometer P. Griffiths. Mumford

has obtained deep results on abelian varieties and constructed an abstract
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theory of theta functions. Hironaka's great work On resolution of singula­

rities of algebraic and analytic varieties has been used by Grothendieck,

Griffiths and others as a basis of new theories. Griffiths is doing a remar­

kable work about the algebraic cycles on an algebraic manifold over C.

So far we had a satisfactory theory only for divisors. i.e. cycles of codi­

mension I.

I will devote the rest of this exposition to One particular side of abstract

algebraic geometry, i.e. the effort to describe analytic properties in terms

of purely algebraic concepts. One approach is, as already said, by compl­

etion. If a variety V over C decomposes into several analytic sheets in

the neighborhood of a point P, then these sheets correspond to the

minimal prime ideals of ok; that they also correspond to the minimal prime

ideals of 0 had been conjectured, and a rigorous proof was given by Nagata

in 1953 as an application of his theory of Henselian rings. He showed that

a prime ideal in the convergent power series ring remains prime in the

formal power series ring,

Zariski proved that if a local ring 0 of a variety is normal then 0 (hence

also oh if the ground field is C) is again normal (1950). This "analytic

normality" is not true for general local rings, so it is natural to look for

a good class of noetherian rings for which the theorem of analytic norm­

ality holds. This problem has been answered by Grothendieck's theory of

excellent rings (EGA Ch.IV). Zariski also invented the theory of abstract

holomorphic functions on a variety V along a subvariety W, and applied

it to the algebraic proof of the principle of degeneration, which says that

any specialization of a connected positive cycle in a projective space is

<:onnected. The theory was developed by Grothendieck as the theory of

formal schemes. If the subvariety W is defined by a coherent sheaf of

ideals I of the structure sheaf O'=O'y of V, then the projective limit &=

l~ 0'/In is a sheaf of local rings with support W. The local ringed space
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p-= (W, &) is called the formal completion of V along ltV, and the ring of

holomorphic functions of Zariski is nothing but HQ(W, 6). Intuitively, V is

something like the limit of shrinking analytic neighborhoods of ltV in V.

Grothendieck built the cohomology theory of formal schemes and proved

Zariski's theorems about HO(W, 0) by descending induction on H(W,O).

Hironaka studied formal mercmorphic functions (which are obtained from

&in the usual way) and proved that, if V is a projective space and ltV is

a connected subvariety of positive dimension, then the field K(V) cf the

formal meromorphic functions is equal to the function field K(V); this

implies, in particular, that any meromorphic function in a connected nei­

ghborhood (in the ordinary topology) of ltV in a complex projective space

is extendable to a meromorphic function in the whole projective space. The

result has been generalized to wider classes of pairs of a variety and a

subvariety by Hartshorne, Hironaka and myself. Here, analytic theorems

are obtained from stronger theorems in formal geometry, in which one

need not worry about convergence.

Another approach is using etale neighborhoods. A morphism I: U~V of

schemes is said to be etale if it is flat and unramified; when non-singular

algebraic varieties over C are concerned it is equivalent to say that I ind­

uces a local isomorphism of the associated analytic manifolds. If a point

P of V is contained in the image I( V) then I: V~V is called an etale

neighborhood of Pin V. A family of etale morphismsli: Vc-~V such that

U;fi(U;) = V is called an etale covering. Zariski topology of ~7 is sometimes

too coarse to pursue analogies of analytic theories, and the use of etale

coverings was initiated by Serre in the theory of algebraic fibre bundles.

If E-. V is not locally trivial with respect to the Zariski wpology on V.

it may happen that there exists an etale covering fj: Uj~V such that

1i-1(E) =ExvUj are isomorphic to Fx Vj, and then E is called an isotrivial

fibre bundle with fibre F (or an algebraic fibre bundle with respect to the
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etale topology). It is clear that.such E is an analytic fibre bundle over

v: Grothendieck used etale coverings to define a new cohomology theory.

This idea was developed by S. Lubkin, Grothendieck and M. Artin and

applied to congruence zeta functions of higher-dimensional varieties.

These two approaches have been united in the recent work of M. Artin.

His approximation theorem in the analytic case (Invent. Math. 1968) asserts

the fo116wing. Let K be a valued field of characteristic zero (e.g. R, C

or the p-adic number field) and consider a system of analytic equa­

tions

(*) f(x, y) =0,

where fi(x, y) are convergent power series in the variables x= (xj, .... , x n )

and y= (Yr, .... , YN) with coefficients in k. Suppose that

ji(x)::::;:(Yr(x), .... , YN(X)), Yj(x) E k[[x]]

are formal power series without constant term which solve the equations

(*), i.e. such that f(x, ji(x» =0. Let c be an integer. Then one can find

a convergent power series solution y(X) = (Yl(X), .... , YN(X») such that

Yi(X)-Yj(x) (j=I, .... , N) have no terms of degree<c. In short, one can

approximate the given formal solution by an analytic solution to arbitrarily

high order. In particular, existence of an analytic solution will follow

from that of a formal solution. The requirement y(O)=O is superfluous if

the fi(x, y) are polynomials in y.

Nagata's theorem cited above, to the effect that if lJ is a prime ideal in

the convergent power series ring k{x} = k{Xl"'" x n } then lJk[[x]] is again

prime, is an easy consequence of the approximation theorem. Proof: Let

fl(x) , .... ,fr(x) generate 1', and suppose that j:lk[[x]] is not a prime ideal.

Then there exist G, il, Ai Ek[[x]] such that G, H$lJk[[x]] and

GH= i:.AJi(X).
i=l

Applying the approximation theorem to the equation Yr+ I Yr+2=l\rYJi(X),
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we get G(x), H(x), A;(X)E k{x} which satisfy G·H=ZAJi E lJ. Moreover.

as every ideal of a noetherian local ring is closed in the m-adic topology

(m= the maximal ideal). G is not in V if it is sufficiently near G. Simi­

larly we may suppose that H is not in v. But GH is in v, contradiction.

The algebraic version of the approximation theorem runs as follows

(Pub!. I.H.E.S. 1970): Let V be a variety (or a scheme of finite type)

over a field k: let 0 be the local ring of V at a point P. Let f( Y) =0 be

a system of polynomial equations with coefficients in 0 :

f=(flo .... ,!T). fi(Y) Eo[YI , .... , YNJ.

Let y= (YI,.'" YN) be a solution of f( Y) =0 in 0, and let c be an integer.

Then there exist an elale neighborhood U of P in V and sections Yl • .... ,

YN of Ou such that fey) =0 and Yi-Yi E me. where iii, is the maximal idea!

of o.

One of the consequences of this theorem is the algebraizability of an

isolated singular point of a complex analytic space. If P is an isolated

singular point of a complex space V then a suitable neighborhood of P in

V is isomorphic to an open set of an algebraic variety.

Artin has generalized the concept of scheme to that of algebraic space.

A down-to-earth definition is the following: an algebraic space X consists

of an affine scheme U (not necessary connected) and a closed subscheme

Rc Ux U such that (i) R is an equivalence relation and (ii) the proiections

Pi: R--->U (i=1,2) are etale. We view X as the quotient UIR. More intrin­

sically it is defined to be a contravariant functor X: (Schemes)o--->(Sets)

which is a sheaf for the etale topology of schemes, satisfying certain

axioms which implies that X is a quotient sheaf UIR as above. Morphisms

are defined so that algebraic spaces form a category. When U and Rare

schemes of finite type over C the algebraic space X= VIR has a natural

structure of complex space. It turns out that an irreducible compact complex

space X of dimension n is an algebraic space if and only if it has n
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algebraic:tlly independent meromorphic functions. This shows that the

concept of algebraic space is a natural one. Using the approximation the­

orem Artin has shown that some important functors of schemes are repre­

sentable by algebraic spaces. One of the charms of algebraic geometry lies

in that it allows attacks by several different methods. And, as we have

seen, the methods of abstract algebraic geometry are not the weakest.

(end)
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