
1(t;)= - EXAlogP(A),
A' f

H(t;)= - EXAP(A)logP(A).
A.I
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1. Introduction.

Information theory IS founded on mathematical statistics and probability

theory. We can find this idea through the book [12J of N. Wiener and the

paper [10J of C. E. Shannon. Furthermore, after their basic theorems were found

by McMillan [8J, information theory has been treated in the pure mathematical

way. The aim of this paper is to give properties of conditional information and

entropy which is an extension of Sinai's theorem.

2. Conditional information and entropy

Let t; be a countable :a-measurable partition of X and (f be a sub-a-algebra,

(X, :a, P) is probability measure space. (6)

DEFINITION 1. The conditional information of t; given 6, written 1(t;jo) IS

defined by the formula

2-1 1(t;/6)=-EXAlogP,,{A),
Aof

where XA is the characteristic function and P,,{A) is conditional probability.

DEFINITION 2. The conditional entropy of given 6, written H(~/tJ) is defined

by the formula.

2-2 H(t;/tJ)=- EXAP6(A)logP6(A),
Aq

We define the information of t;, by 1(t;) and the entropy of written H(~)

by the formula

2-3

2-4

NOTE: H t; is finite, then H(r;) will be also finite, in fact oo>H(t;»O,
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t;V1]= r;.is equivalent to

thus if we denote by Z the class of such e, then the finite partitions belong to

Z. For two partitions ~ and 1J of X, we define their refinement, written t;V1J

to be the set of subset of X

{AnB: AEt;, BE1']}.

It is easily checked that if ~ and 1J are countable measUrable partitions of X.

then so is f;Vr;.

Now, we introduce an order relation on a class of countable measurable

partitions of X We say that ~<r; if each element of t; is ·a union of elements

£rom 1].

2-~

THEOREM 1. If e and 7J are countable and measurable partitions of X, then

tke folWwing identity is valid.

,,2---u I(t;V1Jlr.)=I(i;fl:,)+I(7JIt;VC).

Proof: First we compute the right hand side (RHS) :

RHS=-DAlogP,(A)-DBlogPevc(B)
Aet B~'

=-EXAl\BlogPE(A)-EXAABlogPwc(B)
BE~ AEf'

BE'

For,

on AnB.

on AnC,

CoROLLARY 1. Let t; and 7) be as in the theorem (1),

'&-7 H(f;VT)IC)=H(f;/O+H(7)It;VO.

CoROLLARY 2. Given t; and 7J as in theorem (1),

2-8 I(t;V1])=[(e)+[(7)If;),

2-9 H(i;Vr;)=H(f;)+H(1Jlf;).

CoROLLARY 3. If f;, 1] and I; are in tke theorem (1) and e>1], then

2-10 1(1;/,»1(7)IC), 1(f;»[(7),
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Proof:

since

so we have
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H(~/r,}2:.H('YjIO, H(~}>H(7J).

I(e\l7Jlr.)==I(el7J\lr,)-rI(rj/C)

~\I'Yj==$, I(el7J\lr.)~O,

11

ICt;Ir.)?::I(7JIO.

We write ~ for the a-algebra generated by C;.

PROPOSITION (1). ~c6 if and only if

2-12 I(V6) =0. H(~/6)==0.

- p(6n~) P(6)
Proof: I(~/u)=-logP6(e)==-log P(6) -logp(6)= O.

Suppose, two sub-a-algebra 61 and (}2 of 13 such that (hco2 for each CIE6!>

C2E02" we assume that exists C2E02 such that CICC2 and C2$Cl' In this situation,

since Pc,(y;)<PC2(Yi) implies

we can see immediately that.

2-13 H(Ydcl»H(y;/c~,

where ~ is a countable :.8-measurable partition of X and yiE-X,.

Consider a set BE~ such that B==B1UB:a then we have

PB(Yi)==PB1(Yi)-rPB,(y;»PB1(y;)PB,(Yi),

therefore

2-14 I(y;/B)<I(y;/BD -r I(ydB2),

H(ydB)<H(y;/BD -rH(ydB2).

THEOREM 2. (Entropy theorem)

Let ~ be a cQlt1ltable 13-measurable partitiun of X and H(l;)<oo. If a sequence

6!> 62 of sub-17-algebra of :s is On i 6,

then

I(~/on) i I(t;/o),

2-15 H(e/on) i H(t;/6).

3. McMillan's theorem

In order to prove the McMillan's theorem we need notations. let T be
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measurable, measure preserving transformation in the preceeding section and

let e be a countable :ll-measurable partition of X, and let tf be a sub-o--algebra

of :ll. We introduce the following notations:

VT"iC~)=T-ICOVr-2(f)V···············VT-nCe).
'~I

McMillan's theorem was proved by him in [8J for the case of a finite partition

and L1-convergence.

The theorem was extended to the case of almost everywhere convergence by

Breiman in [1] and by Chung in his paper [3J proved the theorem for the

case of a countable partition ~ with HCD<=.

In this section, we prove this theorem by using Ergodic theorem.

THEOREM 3. CErgodic theorem)

Let fCX)EL1Cx) and T be as above, then there exists f*CX)EL1Cx) suuch that

(i)

Cli)

Ciii)

THEOREM 4.

then

Proof:

therefore

thus

lli!CTkCx))->!*Cx)
n i-O

f*CTCx))=f*Cx)

JxFCx)dmCx)=LfCx)dmCx)

Suppose ~ is a countable :ll-measurable partition of X such that

HCe)<co, if hC~, T)=l}m ~HcX:T-iC~)),

11-1 II-I .-1 .-1

ICVT-i(~))=IC~Vr-iC~))=INT-iCD)+ICt;/VT-iC~)),
i-O £""1 i .... l i-I

If_I .-1 "-I

I(t;/V T-iCf;))=IN T-i(i;))-IN T-iCi;)),
i-I i=O .""1

II-J "-J --I

l(t;IV T-iCi;) = IN T-iCt;)) - I(VT-iCt;)),
;-2 i-I ;=2

.-1 .~

I(t; IT- (n-1)Ci;))=I(VT-iC~))- ICT- (n-l> (f»)=ICVT-iCt;)) - ICt;),
;-11-2 r .... I1-2

i

IC~/Vr-'Cr;)) is decreasing by k, so it will have a limiting value.
'-1
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I(~, T)=¥~; Ic2T-iC~))-!~~ I(r;)+]!~T(~<'!.T-i(e))

=limI(~;\.J'T-iC~)),
11_<0 i=l:

13

THEOREM 5. If r; is a finite measurable partition generated bye, then there

is a finite sub-partition 1J of (0 such that

HCI;I1J) <c.

Proof: Let A b Az, As, •..... be fibers of I; and each of them has positive

measure and

¢(t)= -tlogt (O::S;t<l)

is continuous function, where ¢{O)=&(l)=O, then for 00 (0<00<1),

we have

if> (0< :.
If Bl, Bz, Bg, •••••• be fibers of an another partition r; such that PCAd Bj)<oo,

then

therefore HCf;/r;)<c, i. e., H(f;/1J)--"'O,

THEOREM 6, Let e and 1J are two countable 1J-measurable partitions of X,

then we have h(t;, T)<h C1J, T) +h(e11J).

Proof:

HNT-iCt;))~H(VT-i(e)VVT-iCr;))
,-0 i=O j ...o

=H(V T-i(r;))+H(\;'T-i(r;)/vr- i(r;)) ,
J ~O i=O j-o

H(VT-i(~)/VT-i(r;)"'5.HCeF!T-i(r;)) +HCT-1Cr;)/\)T- i(t;))
i.,.Q ;=0 i=o ;""0

~~H(T-i(t;) /T- j(r;)), =n HCf;/r;),
i-O
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therefore,

thus,
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a-I 11I-1

HNT-i(t;))~HNT-i(r;))+nH(t;I"IJ),
i-o J-o

; H 0(.T-i(t;»<; H 0!.T-i(r;»+H(t;Ir;),

h(t;, T)<h('1}, T)+H(t;Ir;).

COROLLARY 4.

h(t;, T)=hCr;, T).

Proof: By the theorem(8) and (7),

h(t;, T)<h(7J, T)+H(t;, T).

We can make r; such that

H(t;Ir;) < e,

therefore

h(t;, T)<hCr;, T) +e, i. e., k(t;, T)=k(7J, T).

THEOREM 7. (Sinai's theorem)

Let T has the inverse and.Y-~Tn(e)=$J, then

h(T)=h(t;, T),

where

h(T)=llUp h(t;, T).

Proof: If YJ is any finite subfield of $J then

h(1/, T)-;&k(t;, T).

Let ~..= V Tk(t;). By the theorem (4), Me", T)=h(e, T) and the theorem (6),,--a

we have

h(r;, T)-;&k(t;m T) +H(r;It;,.)

=k(~, T)+H(r;It;,.).

Using theorem (5), we can prove that

~H(7j/e,.) =0,

h(T)=sup k(t;m T)=kCt;, T).

Let us assume that G1 and G2 are l1-subfields of ~ and write G{::::.Gz to

indicate that every set in G1 differs by a set of measure 0 from some set in G2•
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MAIN THEOREM.

Let {gn} be a nondecreasing sequence of fields.

If VVT-ign~'iJ.
_=1 i=O

then h(T)=lim sup h(~. T).
11_01) ec~.
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Proof:
. .

If Gn is the field generated by U T-ign and 'iJo= UGn•
;=0 JI~l

then every set in 'iJ differs by a set measure 0 from some set in the a-field

generated by 'iJo. Furthermore it follows by theorem (5) and (7)

h(T)=sup h(~. T)
ecs ..

If 7Jc'iJo, then 7J IS contained in Gn for some n and hence has atoms Bb B2, "',.

B k of the form

u=1.2• ......• k

with GiuvEgn. If 7J is the field generated by Giuv then 7JEGiu,'. 7JCgn and

7JC V T-i~.
i =0

therefore

h(7J. T):=;;'h(V T-i(D. T)=h(t;. T)< sup h(~, T),
i"'l) ec:w.

thus.

h(T)= sup h(t;. T).
eC"~.
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