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An extension of the properties on conditional information

and entropy in probability spaces

Chun Ho Choi

1. Introduction.

Information theory is founded on mathematical statistics and probability
theory. We can find this idea through the book [12] of N. Wiener and the
paper [10] of C. E. Shannon. Furthermore, after their basic theorems were found
by McMillan [8], information theory has been treated in the pure mathematical
way. The aim of this paper is to give properties of conditional information and
entropy which is an extension of Sinai’s theorem.

2. Conditional information and eniropy

Let £ be a countable B-measurable partition of X and § be a sub-o-ajgebra,
(X, B, P) is probability measure space. (6)

DEFINITION 1. The conditional information of ¢ given &, written I(¢/6) is
defined by the formula

2—1 1(§/6)=—2 X alogPs(4),
where X, is the characteristic function and Ps(4) is conditional probability.

DEFINITION 2. The conditional entropy of given 6, wriiten H(£/6) is defined
by the formula.

2—2 H(/6)= —A;%AP s(AlogPs(A),

We define the information of &, by I(§) and the entropy of written H(&)
by the formula

2—3 I®= —AA?}AlOgP 4, :
2—4 H@= —:L:IEX AP(ADlogP(A).

Note: ¥ £ is finite, then H(¢) will be also finite, in fact oo >H(£)=0,
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thus if we denote by Z the class of such &, then the finite partitions belong to
Z. For two partitions £ and » of X, we define their refinement, written &\y
to be the set of subset of X

fANB : As&, Bey).

It is easily checked that if £ and 7 are countable measurable partitions of X,
then so is £V/%.

Now, we introduce an order relation on a class of countable measurable
partitions of X. We say that £&=7 if each clement of £ is .a union of elements
from 7,

2—5 &=y is equivalent to  &Vy=y.

THEOREM 1. If & and 7w are countabie and measurable partitions of X, then
the following identity is valid.

.2—6 IENQ=IE/D+IHIEVD.
Proof: First we compute the right hand side (RHS) :
RHS= —MZ?C alogP (A) —B‘E'XglogPev: ¢:))

= —E‘.gcwlogP 1:)) "'“Z]ex‘mlogP eve(B)

Bel

=—logP(A)P:v(B) on Af1B.
For, Cel, P;(A)=£-(I—,‘%%)—C)— on AfIC,
P (B)=EL4NE00) on ANBNG,
thus, RHS:_logﬁ(_éIr)l____.&BC)nC) on AanC,
-therefore

_ PCANBNO _ PCAQBNO)
RHS—;.:%_Z,E‘,;MBACI%“‘?ZES‘—— f{%"wa"ggﬁ‘c—_‘i@‘)“)'

COROLLARY 1. Let & and % be as in the theorem (1),

27 HEN/O=HE/D+HG/EVD.
COROLLARY 2. Given & and 9 as in theorem (1),
2—8 IEND=IE)+I(5/9),

2-9 HEVD=HE) +H(»/2).

COROLLARY 3. If &, % and { are in the theorem (1) and &=y, then
2—10 IGID=IGR, KO=Im,
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2—11 HEID=H@/D, HEZHG).
Proof: IEN/ 9 O=IE/NVO+I(5/0)
since §Vy=¢, I(E/VD=0,
so we have

IE/0=1(3/0.

We write £ for the o-algebra generated by &.

ProOPOSITION (1). &€& if and only if

2—12 I¢E/6)=0, HE/6)=0,
Proof: I(§/6)=—logPs(&)= —*logP(Pﬁ(Q)’E ) _ ——loglr;ggg = 0.

Suppose, two sub-g-algebra &, and 6, of B such that §,.=¢, for each =6,
263, we assume that exists ¢,=6, such that ¢;Cc¢; and ¢,e¢;,. In this situation,
since Pe,(y)=Pey:) implies ICy: /e )=I(yif e,
we can see immediately that.
2—13 H(yi/e)=H(y:/c,
where € is a countable B-measurable partition of X and y;=X:.
Consider a set BE3 such that B=5B,JB,, then we have
Py(y9)=Pp(3) + Pp.(y)=Pp(y) Py,
therefore
2—14 I(y:/BY=I1(y:/ By +1(3:/ By,
H(y;/B)=H(y:/By) +H(y:/By).
THEOREM 2. (Entropy theorem)
Let & be a countable B-measurable partition of X and H(&)<oo. If a sequence
&1, 63 of sub-c-algebra of B is 6,16,
then
I(€/6.) 1 I€/6),
2—15 H(¢/6.) T HE/6).

3. McMillan’s theorem

In order to prove the McMiilan's theorem we need notations. let T be



12 Chun Ho Choi

measurable, measure preserving transformation in the preceeding section and
let ¢ be a countable B-measurable partition of X, and let § be a sub-g-algebra
of B. We introduce the following notations:

W THO=T OV THEN werreeerenee VT@).
McMillan’s theorem was proved by him in [8] for the case of a finite partition
and L;-convergence.

The theorem was extended to the case of almost everywhere convergence by
Breiman in [1] and by Chung in his paper [3] proved the theorem for the
case of a countable partition & with H(£)< oo,

In this section, we prove this theorem by using Ergodic theorem.

TueorREM 3. (Ergodic theorem)

Let f(xY=Ly(x) and T be as above, then there exists f*(x)=L,(z) suuch that

®  REATE-S@
€1)) F(T(x))=f*(x)
G [ f@dm@=] fz)dm(z)
THEOREM 4. Suppose £ is a countable B-measurable partition of X such that

H®<oo, if (& T=limLHC/ T2,

then
k&, T)=lim - HC/ T-(©) =HmH(/V T-@).
Proof:
I T-HEN=1EV T-HEN=KN TN+ T,
therefore
16N TE) =1 T @)~ I T,
1N T @=IN THEN - IV T @),
I/ T- 2@ =1/ T~ KT~ @)=I/T- ()~ I,
S/ V TN =V TN~ 1),
thus

I(E/\_;’T"({")) is decreasing by #, so it will have a limiting value.
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Therefore
16, D=lim1¢V T-@) ~limL 1&) +1imIe/ V T-1)
=limI(e/\/ T,
thus
h(E D =lim L HCY T@)=lmHEN T©O).
THEOREM 5. If £ is a finite measurable partition generated by &, then there

is a finite sub-partition # of & such that
HEMmM<e.
Proof: Let A, A, Az - be fibers of £ and each of them has positive
measure and
p(D=—tlogg (O=t=1)
is continuous function, where ¢(0)=¢(1)=0, then for 5, (0< 5,<1),

we have N

$ <7
If By, B,, Bs, -+ be fibers of an another partition % such that P(A;/B;)<4,
then

H(e/1)~=—L.P(B)P(A:/ B)logP(A:/B)
=T PBIH(P(A/BNZPB) - —<+<s,
therefore H(E/p)<e, i.e., H(&/p—0,
THEOREM 6. Let £ and 7 are two countable B-measurable partitions of X,
then we have (¢, TO=h (9, T)+h(/7).
Proof:
HN T EO=HN T OV TG
=HN TG +HNTH@ N T (),
HN T [N/ T-i)=HEN T )+ HT-HO N T-H)
=3 H(T /T (), =n HE/,

‘hence,
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HO/T-EN=HO/T-())+nHE /),
therefore,
La§ren=L a1+ HEm,
thus,

k&, TY=h(y, T)+HE/ ).
COROLLARY 4.

kg, T)=R(y, T).
Proof: By the theorem(8) and (7),
k(¢, TD=h(y, T)+H(E, T).
We can make » such that
HE/D <s
therefore
R, T)=h(3, T)+e, i.e., b(E, T)=k(, T).
THEOREM 7. (Sinai’s theorem)
Let T has the inverse andS{&T"(e)=3, then
r(T)=h(E, T),
where
R(TD=sup h(, T).
Proof: If 5 is any finite subfield of 3 then
k(y, TO=hE, T).

Let &=\ T*(). By the theorem (4), h(E,, TY=h(E, T) and the theorem (6),
we have
h(y, TY=h(E,, T+ H(y/E,)
=h(¢, TY+H(/&).
Using theorem (5), we can prove that
lim H(7/¢)=0,
h(T)=sup k¢, T)=k(,T).
Let us assume that G; and G, are o-subfields of B and write G;==G, to

indicate that every set in G; differs by a set of measure 0 from some set in G,.
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MAWN THEOREM.

Let {g,} be a nondecreasing sequence of fields.
If \Z '\ZT“'g,,Eﬂ,
then h(T)=!i_1£1 sup h(, T).
Proof: U G, is the field generated by L_Jo T g, and 3":.@9’"
then every set in B differs by a set measure 0 from some set in the s-field
generated by B, Furthermore it follows by theorem (5) and (7)

h(T)=sup (& 1D
I 5B, then 7 is contained in G, for some n and hence has atoms By, By, ---..

B, of the form

H n

B,= U ﬂo TGy u=1,2, b

with G,.<g, I 5 is the field generated by G.,, then »=G,,, g, and
7< \Z T,

therefore
h(y, T)éh(i\:/oT"i(E), TY=h(, T)< sup R, T,

thus,

(D)= sup R(E, T).
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