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ON CONVERGENCE OF SEMIGROUPS OF OPERATORS
IN BANACH SPACES

By K1 SIX Ha

Let X be a real Banach space. A family {T'(t); t>>0} of operators from a subset X,
-of X into itself is called a semigroup of type w on X, if the following conditions are
.satisfied

T =I, T+s)=T@) T(s) for t,s>0,
im T() z=z for z€X,

and there exists a real number w such that
(1) TTHz—TE)yll et z—yll
for £>0 and x, y=X,. We define the infinitesimal generator Ay of a semigroup {7T'(¢);
>0} of type w on Xy by
Apz=lms1{T (1) z—z}

for z=X, whenever the right side exists. A subset A of Xx X is said to be in the class
Ao}, =0, if for 0<Gw<1 and for (z,, v, 1EA,k=1,2, we bave
(2) | (z14-291) — {z2+2ys) | =2 (1—0) | 2i—22 1]
We say that A is accretive if »=0, and in addition, A is m-accretive if R(I+i4) =X
for all 1>>0.

Put J;=(I+24)7! and A,=1"1(I—-J) for >0. The next lemma is well-known:

LEMMA A. Let A=d(w), w>0 and let 0<Aw<1. Then
1) Ji is a function and
N aizg—Jy | <(1—dw) i 2~y | for z,yeDJJ),
2) A; is a function in the class Ai{w(1—2iw)™} and
ALz | < | Az | < (1—Jw) M Az| for z&D{J) ND{A)
‘where |Az|=inf{|l y || ; y=Az}.

In the previous paper [5] the author proved the following Theorem C with making
use of Lemma B.

LemMa B. Let ACA(w), w20 with R(I+iA) > coD(A) and let 0<C0w<1/2. Then
—A; is the infinitesimal genmerator of a semigroup {T;(t); :=0} of type v (1—iw) ™" on
coD (A) which satisfies the following theree conditions:

) u;(t) =T:(t) = for x=coD (A) is a unique solution of the Cauchy problem
du; (t) /dt“‘:‘Aﬂh (t) =0
U3 (O) =,

(i) Furthermore
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| T3l z—J 7z ||

(3 < (1—Aw) memte” A2 {22202 (1 — Jow) "2+ miew (1—Aw) "1+ a} V2 fz—z ||«
(ili) There exists ho>0 depending on >0 and z<coD (4) such that
(4 P Tafe+h) 2— T, () x || <heot” 43 (|| Az |} +1)  for 0<h<lho.
Since (1—s) <le?” for s=[0, 1/2], (3) implies that
(5) I Ty z—Jrz <V 7K@ 2, 0) | Azl <V7 (1—20) 7K (2, 4, 0) [Ax]

for n such that t=ni+d, 0<6<{4, and for z=D (4), where
K (t, 2, @) =@l A=20t {2(02:2 (1 — dew) 2+t (1— Aw) 73) +2} 12
and K, 2, ») is uniformly bounded for ¢=[0,%,] as i—0*.

THEOREM C. Let A=d(w), 0=20 with R{I+14) ScoD (4) for 0<iw<1/2. Then for
the semigroup {T:(t); €0} in Lemma B, UM T, () z exists for z=D(A) and t20.

If we define T(t).r:l)ig{ T; (&) z, then the family {T (t}; =0} is a semigroup of type
o on D(A) and for 0<h<hy and z=D (A)
N T+h z—T ) z | <het (2] Az|+1).

In this paper we consider relations of the convergence of {A,} where A,=#&(w,), w,
>0, the convergence of {J;,} where J,,= (I+14,) ! and the convergence of semigroups
given by A, in the sense of Theorem C in general Banach spaces. In particular we
shall show that if functions A and A, are closed m-accretive then 1}33 Jon=dJ3

Eij{} T,@) =Tt and 1}{{} A,=A are equivalent when the dual X* of X is uniformly
convex using the following Theorem D where {T,(f);¢=>0} and {T(2); 220} are
semigroups given by A, and A in the sense of Theorem C respectively.

THEOREM D. Let A and B be closed m-accretive subsets of Xx X and let {T (t); £=20}
and {S(f) ;1=0} be semigroups given by A and B in the sense of Theorem C respectively.
Thern T(t) =S{t) for all t=20 implies D(A) =D (B) and A=DB when the dual X* of

X is uniormly convez.

Proof. Since X* is uniformly convex, X is reflexive together with X*, therefore the
Lipschitz continuous X-valued function 7 (f) x with z=D (A) in r=>0 is strongly differen-
tiable at a.e.t in [(,00) (see Appendix in [8]). With the closedness and m-accretivity
of A, T(t)x is a unique solution of the Cauchy problem

[du (&) /dt+Aul(t) =0 a.e.t in [0, c0)
u(0) z=x
for z=D(A) (see Theorem Il in [17). Also S{f)z is a unique solution of the Cauchy
problem
du(t) /dt+Bu(t) 20 a.e. t in [0, c0)
{u 0) z=x
for z=D (B). Hence Corollary 2 in [2] completes the proof.
Now we consider the main theorems.

THEOREM 1. Let A=H (0), 0<o<<a with R{I+14)>coD(A) for 0<io<1/2 and let.
Ash (o), 0<o,<a, R(I+34,)DcoD(4,) for 0<iw,<1/2. If
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6) Hm j, z=J,2 for z=coD ()

and D(A)CD(A,) for every n, then for every x=D (A)

E{{}Tn Bz=T{t) x
uniformly for t in every bounded interval of [0,00) where {T,(t);t>>0} and {T(¢);:7>0)
are semigroups given by A, and A in the sense of Theorem C respectively.

Proof. By (6) lﬂiHjA;,,,x=A1x for x==coD (A), and hence there exists M >0 such that

(7) Az | <M and || 4,z || <M.

Choosing the integer m such that t=mi+hk and 0<'A<{/, we have the estimate for
=D (A)

8 I TOz—T. Oz = TOz—Ji.zll + 1 Ji.2—T. ) Il
We estimate the first term of the left side in (8) as follows.

[T ze~J5.2|<NTO2z—T, )| + || Talt) z— TilmA) z ||

+ | TilmA) =Tz || + | Jire—J7 .z ||
By (4), (5) and (7) we have
| T30 2~ Tamd) 2 | <hee/ 0 (] A | 410 heet 075 (M+1)

and

| TalmA) z—T"z || <V 1K, 4,0) [ Azl < 2K, 4 w) M.

Thus we obtain

(9) | T z—J5.2z |
<IN T z—Ti(e) z || +ie2t/ A2 (M41) + v AK (20, 2, @) M+ || Jpz—J 5.z ||
for t=70,¢,,. We estimate the second term of the left side in (8) as follows.
5. z—T, () z ||
< Jrxz—Jdr x5 edamx— T J; x|
F N Ton (mA) Ty — Ton O Jynz | + | Tin () Jinz— T (8) x |
| T z—To (W) |l
Using Lemma A, (1), (5) and (7) we get
NIz —dr.dpaz | KAQ—Aw,) ™ | Az il <21 200,) ™M,
B T7 adant=TramA) oz | <V 7 (1—den,) WK, 2y ) | A 20T
<V (—he,) K, A, @) | Az |
V7 (1—Aw,) 1K {8, A, 04) M,
| Ton mA) T — T () o || et 0720 (21 AT, 2} +1)
Lhewr1-290 (2M+1)

and
| T () T T 6) || e/ 6500 || Ay | < e a0 B,
Thus we have

{10) 1 J7z— T @)z | <A(1—2a) "M+ v T K (to, ha) M
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+ destor A7 (QM+1) + et VAOM A4 || Ty, () z— T () 2 ||

for t=[0, t,]. It follows from (9) and (10} that
[ TOz—T. )zl
<N TOz—Tal) z || + {2(1—4a) ™+2v 71K (to, 4 ) +Ae V40t M
+ | Jyrz—J5.x || +24e% A3 QM+1) + || T (B} z—T, () z ||
for z=D(4) and z=[0,#,]. First for each >0 we fix A>0 sufficiently small such that
| T@)z—Tate) z || <e/5,
fA(l—ia) ™+2+ 1K (to, 2, @) +Ae=t/ T2} A[<e/5,
erato/ 1-Aad (2M+ 1) <€/5
and
| Tan ) 2—Ta ) 2| <e/5
for every n. Next we choose » sufficiently large such that
W Jmz—J7,.2 || <e/5.

Thus it follows that for z=D (4)
m7, () 2=T (1) =
uniformly for ¢ in every bounded interval of [0, o9).

THEOREM 2. Let A,=A (w,), 0<0,<<a, R{+24,) DcoD(4,) for 0<iw,<1/2. If
DD (4,) for every n and !}_IE Jin x exists in D for z=coD(A) and some >0, we
denote the limit by J,x, then there exists ASA0) such that J;= (I+1A) ! and R{I+
1A) DcoD for 0. Moreover for every z=D(4)

(11) lim 7, () z=Tt) =
uniformly for t in every bounded interval of [0,00) where {T, (t};t=>0} are semigroups
given by A, and A in the sense of Theorem C respectively.
Proof. The limit imJ, = exists in D for all 10 (see [4]). If we define A=XxX by
Unofldaz, 771{I—J32)]; z=coD}
then clearly A=#(0). For z=coD, from

{(12) AVI—J) z=AJ;x
we have z= (I+14) J,z=R ([-+14), that is,
(13) coD=R (I+24).

Also by (12) we have Jyz= (I+14) 'z for z=coD. For y=D (A4), there exists z=coD
such that y=JzeD, and hence D(A)c=D. By (13) coD{A)R{I+14) for 1>0.
Therefore it follows from Theorem 1 that (11) holds true.

THEOREM 3. Let A be a function in the class A(w), 0<<o<<a with R ([+14) DcoD (4)
for 0<2w<1/2 and let A, be a function in the class A(w,), 0o, <& suck that R(I+
24,) 2coD (A,) for 0<iw,<1/2. If D{A)<D|(4A,} for every n and 11_{1 A x=Az for
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x=D(A) then for every z=D (A)
(14) lim 7, () 2=T () z

uniformly for t in every bounded interval of [0, o0} where {T, (t); t=20} and {T(¢); t =0
are semigroups given by A, and A in the sense of Theorem C respectively.

Proof. For z=coD(4) there exists y=D(A) such that z=y+iAy and hzn Ay=Ay.
We have the estimate
N Jawz—daz | = | Jawz—3 | = | JinZ—Jan (9+24,9) |
(15) <(1—Aw,) Hlz— (y+449) |l
= (1—Aw,) !y 24y—y— 24y |l
<@A—2a) M Ay— Al
Thus 1}_?3 Jinz=J:z for z=coD (A). From Theorem 1, (14) holds true.

COROLLARY 4. Let A, be a function in the class A{w,), 0,20 such that R{I+i4,) >
coD (4,) for 0<hw,<1/2. Supposing that 112} w, exists and 11_1{} A,z exists for zEE
(EN32D(A,) we denote the limits by o and Az for x=E respectively. If D(A)=D
(4,) for every n then A=f(w), @=>0 and R(I-+;A)DcoD (A) for 0<iw<1/2. More-
over for every z=D (4)

(16) ];1_21 T.0z=T@)z

uniformly for t in every bounded interval of [0,00), where {T,(t); 220} and {T{0) s
t2>0} are semigroups given by A, and A in the sense of Theorem C respectively.

Proof. Since A,=d(w,), for z;, xz,=D(A) we have
| (214 2402)) — {22+ 14,20 | = (1 —Aws) | 21— 22|l .

As n—co

| (z14+2471) — (22+24z2)) | = (1—20) z1—22 1.
Thus A=# (@), ©=>0. Since R (I+14,) DcoD (4,) =coD (4), for z=coD (A) there exists:
z=D(A,) such that z=z+14,z. As n—o there exists z=D(4) such that z=z+14x
ER(I+214), that is, R(I+24) ScoD (A) for 0<iw<1/2. Therfore by Theorem 3, (16)
holds true.

THEOREM 5. Let A be a function in the class # (o), 0<w<<e with R(I+14)DcoD (4)
Sor 0<Q0<1/2. Let A, be a function in the class 4w, 0w, <a for each n such.
that R(I+24,)> coD(A4,) for 0<40,<1/2. I im A z=Az for 2=D(4) and D(4)
<D (A,) for everymn, ¢ then ASA (0), 0<o<a with R (I+14) >coD (A) for 0<20<1/2.
Moreover for z=D(4) =D (A)

(17) bm 7, () 2=T ) z
uniformly for t in every bounded interval of [0,00) where {T,{t); t=0} and {T {t); £>0}
are semigroups given by A, and A in the sense of Theorem C respectively.

Proof. For z=coD(A) cR(I+AA) there exists z,=R{I+1A) and z,=D(4,) such
that
{18) 2, =%, Az, and 1153 2,=2.
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Since A= #(w), we have for z,, z,=D(A)

| (zat+2Az,) — (Znt2Az,) | =(1—20) | Za—zn ]l ,
and hence im z, exists, we denote the limit by z. By (18) lim Az, exists and it
equals to Az for =D (A). Asn—0o we have from (18 z=z+idz=R (I+i4). Thus
coD (A) ©R(I+24). Since coD (A) =coD (A) we obtain R (I-+14) DcoD (4) for 0<io<
1/2. Since A=# (w), we get for x4, T2.=D (A4) such that h{{} z;,,—x; and th X2, =Z3

| (210t 2A71,) — (22, AAZ2,) || = (1—20) | 21— Z24 ] -

As n—o0

| (z1424z)) — (z2+ A7) || = (1—20) || 21—z ||
for z;, zz=D(A), and hence A=sd(w). Set J;={(I+1A)"! and A,=11(I—J;). Since
Az= ATz, there exists y,=D(A) such that im y —J,z and im Ay, =A4,z. Therefore

meeco

we obtain 11313 (¥n+14y,) =2. We have the estimate

| oaz—doz | 2| Jan® =3l + || ym—JTaz |
for z=coD(A). Since 4,4 (w,), 0<w,<a,
[ Janz—3m | < (1—200a) | T2nZ+240S307) — G+ 24070) |l

<(1—ia) 7 z— Bt A4y |l

<(1—a) | z— rut-24y2) | +2 1| Ayn—Anyml}-
First, for every ¢>0, we fix m sufficiently large such that

(1—2a) M 2= (ym+24ya) | <e/3, || yu—daz [| <e/3.
Next we choose 7 sufficiently large such that
A(1=2a) || Ayn—Auya |l <e/3-

Thus it follows that for z=coD (4), 1133 Jy.x=dJ:z. Hence by Theorem 1, (17) holds true.

COROLLARY 6. Let A, be a function in the class A (w,), 0<w,<a such that R{I+A,)
DeoD(4,) for 0<iw,<1/2 and 13{2 w,=w exists. If Ei_{{} A,z exists for x<=E (<=3,
D(A,)) we denote the limit by Ax for =E, and if D(A)=D(A,) for every mn, then
A and A are in the class Alw), 0<o<<a with R{I+14) >ScoD{A) and R(I+i4)>
coD (8) for 0<iw<1/2. Moreover for every z=D(A)

im T,()z2=T @)=
uniformly for t in every bounded interval of [0, oo} where {T,(t); t=0} and {T(t);
t=>0} are semigroups given by A, and A in the sense of Theorem C respectively.

Proof. Since A, =/ {w,) we obtain for x,, z,=D(A)=D{A4,)

I (z1+24,21) — (22F2420) | = (1—2wa) | 21— 22 | -
As n—o0 we have
I {z4+AAz1) — {x2+AAz2) | = (1—200) |l 21— 22 | -
Thus A= (w), 0<o<la. From R({I+14,)DcoD{4,) =coD(4), for z=coD(A) there
exists z=D{A) =D(A,) such that z=z+14,x. As n—oo we have z=z+214Az=R(I+
24). Thus R{I+iA4) DR (I+i4) DcoD (4) for 0<iw<1/2, and hence A=d{w), 0<o
<. Therefore by Theorem 5 the proof is complete.
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As an application of Corollary 4 we consider the following.

THEOREM 7. Let S, be an operator from a closed convex subset X, of X into itself such
that
| Spz—Swy || Let | z—y |l for z,y=Xo
where w=>0 and h,>0, h,~0% as n—co. Suppose that 1}}2 h,"1(I-8,) x exists for every
zE Xo, we denote the limit by Azx. If D(A)=X, and R(I+-7A) DcoD(4) for 0<20<
1/2, then A= (w) and for every z=D(4),
T () z=lim ([_)_. ;A) "z
uniformly for t in every bounded interval of [0,00) where (T (¢);¢20} is the semigroup
given by A in the sense of Theorem C.
Proof. Put A,=h,"*(I—S,), then D(4,) =X, For 2, x,7" D(4),
[ (224 24,21) — (22 +24,20) |l
= (1+28,7Y) (zy—25) | — 24,71 1 Su2— a2 ||
={1—2k, et —1)} || 21— 22 | -
Set w,=h, {e**~1). Then
(19) | {214 AAnz1) — (224 24,22) || 2= (1= Jen) || ;y— 220
and hence A,=4(w, and l_ifﬂ w.=w. As n—o0 in (19) we have
| z14+2A42) ~ {22+ 2420} | > (1—200) [ 21— 22 |-
Thus ASd(w), and since R(I+24)>coD (4) for 0< w<1/2, we obtain Acg{w)
and R(I+24) coD (A) =coD (A) as in the proof of Theorem 5. We shall show that
R({I+24,) ocoD(4A,) =X, for sufficiently small i>0. Let = ~X,. We define a mapping
K from X, into itself hy
(20) Kz=(1+2i/h,) 7 &2k, (1= 4/R,) 18 2.
For z;, r.=X,, we have
| Kzy— Kap| <Ak em (1+4/h,) M 21— 20
that is, K is a strict contraction for sufficiently small 1>>0. Hence there exists X,
such that Kz=z. By (20)
= (1+2/h,) z+ik, " (1+4/h,) ! S,x,
v=z+iA,z=R(I+14,).
Thus R (I+:4,) DcoD (4,) for sufficiently small ;>0. 1t follows from Theorem 5 that
for every z&=D(4)

Lm 7, () 2=T () z
uniformly for ¢ in every bounded interval of [0, c0), where {T,(z); t==0} is a semigroup

given by A, in the sense of Theorem C. For every z= D(A)=D(A) we have the
estimate

Tz~ | <N T@z—Tol@zll + | Tal) 2= Topmlt) z |l
+ " Tt/n.m ).T—‘J';/,,,,,,.l‘ H -+ “ J”t/n.mx_Jnt/n,z H -
By (5} we have

“ Tt/n.m (t) I——J‘t/n,mx ” < ‘\/27-7_1—--1{ (t’ t/ﬂ, (()) ” Ar/n.mI ” < ‘\/m K(tO’ 10/71, (U) A{-
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Let t<[0,2]. First, for every ¢>0 we fix m sufficiently large such that
| T@z—Tnl) || <e/4
and
Tt — T || <e/4
for every n. Next, we choose z sufficiently large such that
| Tu @) 2— Topnmz | </4

and

Vio/n Klto, to/n, w) M<c/4.
Accordingly for every z=D (A) 7
T () z=Um (I+¢/nd) "

uniformly for ¢ in every bounded interval of [0, o).

THEOREM 8. Let X* be uniformly convex and let A, and A be closed m-accretive
Sfunctions. If D(A,)=D(4),
(1) lim 7, () z=T () =
for z=D{A) and 1}{2 A,x exists for x=D(A) then 1}}}3 A, x=Azx for x=D(A), where
{T,(); t=0} and {T{t); t=0} are semigroups given by A, and A in the sense of
Theorem C respectively.

Proof. Put lim

A, x=Bzx for z=D(B)=D(4), then B is closed m-accretive. Let

{S(#): £=0} be a semigroup given by B in the sense of Theorem C. By Corollary 4 for
every z=D (4)

(22) im 7 () 2=S () =
uniformly for £ in every bounded interval of [0, o). By (21) and {22) we have for
z=D(A)=D(B), T xz=S{t)z. It follows from Theorem D that Ax=Bz for z=

D(A)=D(B). Hence we obtain IEE A, x=Azx for z=D(4).

REMARK. Let X be a Banach space the dual of which is uniformly convex and let A
and A, be closed m-aceretive functions. Put J,= (I+24) ! and J,,= ([+14,) ™ Sup-
pose that {T,(t); =0} and {T(t); 220} are semigroups given by 4, and A in the
sense of Theorem C respectively. By Theorem 1, Theorem 8 and (15), the following
1), 2) and 3) are equivalent:

1) ;,].:,EB Jl.n=J 2
2) 13_{{} T,(&)=T(t) uniformly for :=[0, £,
3 lim g=4
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