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ON A CRITERION FOR OBTAINING FULL INFORMATION
ABOUT THE UNKNOWN STATE OF NATURE

By HYUN·CHUN SHIN AND JAE-JOO KIM

§O. Introduction

Consider a situation in which it is desired to gain knowlege about the true value
'Of the unknown state of the nature by means of observations. Information concerning
the unknown state of the nature is defined by as a random variable whose (objective)
-probability law is known given any state of the nature which is an element of a fixed
state space S. (6), (7).

Information amount of an information is defined by (2), (4), (5), as the expected
·difference between the entropy of the prior distribution over S and the entropy of the
posterior distribution. If an information becomes available to a decision maker for
solving a specific decision problem, then the loss function in the specific decision problem
at hand.

The problem which will be discussed in what follows is: On what conditions can one
-decide whether or not a certain sequence of observations contains all the information
which is needed (for example, to find the true value of the state or the
parameter) ?

The objective of the paper to try to answer the above question in the case S=
{Sb S2, "', s"J •

In section 1 we shall discuss from the point of view of the question the following
problem. Let us be given an infinite sequence {Xn}, (n=l, 2, ...) of observations. We
suppose that the distributions of the random variables Xi (i=1,2,"') depend on a
state S, whose set of possible values is finite. We suppose further that for each fixed
value of S the random variables are independent. We shall consider the amount of
information S which is still missing after having observed the values Xb X2, "', Xn and
compare it with the error of the "standard" decision, consisting in deciding always in
favor of the hypothesis which has the largest posterior probability. And we give an
upper bound for the amount of missing information

In section 2 we give a neccessary and sufficient condition for obtaining full information.

§1. The amount of missing information and the error of standard decision

Let (S, S) be a measurable state space, r; be a prior probability measure on (S, S).
-Let r; be a absolutely continuous with respect to a measure A on (S, S) and let dr;=
r; (s) dA. Then the uncertainty measure H (f;) of the unknown state sES is defined by
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(1. 1) H (~) = - S~ (s) log~ (s) d..:l.

Specifically, if S= {SI> S2" "', s",} and ~= (~(SI)' ~ (S2) , "', ~ (sJ) = (~I> ~2, "', ~J, where,

~i~O, :E ~i=l, then it is
i=l

(1.2) H(~) =- t~ilog~i'
i=1

Let us denote by X (n) the random n-dimensional vector with components (XI> X2,

"', Xn). Let X (n) be a random variable on a measurable space (X(n) , X (n}) whose
probability density function f (x (n) Is) given sES with respect to a measure j1. on
(X (n), X (n)) is assumed to be known. We suppose that the random variables Xi (i=l, "',
n) are independent under the condition that 8=Si (i=l, "', m) is given. Let fdx (n}),
f2 (x (n)), •.. and f", (x (n)) denote the density function for 8=Sh 8=S2' ..• and 8=s""
respectively.

We suppose further (this restriction is made only to simplify notations) that all the
distributions in question are absolutely continuous.

Let (A, A) be a measurable action space and W ( " .) be a measurable loss function
defined on (S x A, S x A). Then we shall say that these elemets (S, S) , ~, (A, A) and­
W specify a basic decision problem Do and denote it as Do= IS, ~,A, w}.

IT a decision maker can know the realized value x (n) of X (n), then we shall say an
information e(X (n)) is available to a decision maker for solving a decision problem Do.
And then we shall say that he has a decision problem D= {Do: e (X (n) ) }.

It is needless to say that an informa1'ion e (X (n)) for sES is defined independently of ~
and W. After observing X(n) =x (n) , by Bayes' theorem, the posterior probility law
~ (s Ix (n)) is given by

(1. 3) ~ (six (n)) =.; (s)f(x (n) Is) If (x (n)), where f(x (n)) =J~ (s)f(x (n) Is) d..:l.

For simplicity, we shall denote the posterior probability measure given X (n) =x (n) by
~ (x (n)), when the prior probability meature is';:. Specifically, if S= ISh $2, "', s",} and
~= (~I> ~2.. ,';:J ES"'-l, then'; (x (n)) = (~(sdx (n)), ~ (s21 x (n)), "','; (s",1 x (n)) = (~1 (x (n)} ,

~2 (x (n)) ,"', ;'" (x (n))) ES",-1 where Sm-l= {(rb r2, "', T",); Ti;;'O, t ri=l}.
i=1

Then the still remaining uncertainty measure after observing X (n) =x (n) is given dy
H (~ (x (n)) and its expected value

(1. 4) M(X(n) I.;:) =E(H(';(X (n) »)) =J H(~ (x (n) )f(x(n) )dj1.
XCn)

is called the amount of missing information after observing e (X (n) ) by Renyi (8), (9),

or the equivocation of e (X (n)).
The information amount I (X (n) I~) which an information e (X (n) ) provides is:

defined by

(1.5) I(X(n) l~) =H(;;) -M(X(n) I~).

It is well known that H (~) and M (X (n) I~) are concave function ;ES",-l and';: (x (n) ).,
ESm-l respectively, and that I (X (n) I~};;'O (2).
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Let us introduce the following decision rule. The most natural decision after having
>Dbserved X (n) =x (n) is essentially the same as the reasonning applied in the case
S= {SI> S2}, the case of two simple hypothesis (9).

It states that SI> S2, •.• or s... is accepted according as /;J!1 (x (n) ), /;d2 (x (n) ) , ••. or
';ml... (x (n)) is greatest, the greatest posterior probability, and if ';=J!l (x (n)) =';=2/2 (x (n) )

=···=';...f... (x (n)), one makes a random choice among S10 S2'" or smwith probabilities
';I> ';2, ••• or.;.... respectively. We shall call this the standard decision. Let us define
the random variable fPn=fP (X (n)) as follows:

(1.6) fPn=Si if the standard decision means acceptance of Si (i=l,., m).

We adopt the common convention of defining W(S, fPn ) such that W=Q when the
>correct decision is made, and 1 otherwise. The error En f)1 the standard decision after
taking n observations is defined as the probability of the standard decision being false.
We have clearly

cn=PT(fPn-=s;:.S) =f;1 (P, (fPn=S2!S=SI) +PT (fPn =S31 S=SI) +...
(1. 7) +PT(fPn=S",IS=SI)) +';2 (PT (fPn =sIIS=S2) +PT(<1Jn=S3 IS=S2) +...

+PT(fPn=s",IS=S2)) +"'+f;mCPT(<1Jn=sI!S=S",) +PT(<1Jn=s2I S =s",) +...
+PT(fPn=Sm-l IS=S"J ).

In a decision problem, if D is available to a decision maker, then we devide the
.sample space into the disjoint acceptance regions, X m , X(2)' "', and X(m) such that
fPn=Sj is accepted when x (n) EX(j), j=l, 2, "', m. With this specification we have (see
{l0))

{1. 8)

where

cn=f;11x,,!1 (x (n)) d,u+tell (x (n)) d,u+'" +L,.!l (x (n)) d,u)

+';=2~xJ2 (x (n) )d,u+LJ2 (x (n) )d,u-';- .. ·-i-L/2 (x (n)) dp) + '"

+f;... CL.!... (x (n) )d,u+Ix,,,f'" (x(n) )du+"'+L../ ... (x (n) )dp)

(1. 9)

{l.IQ)

.and

X - { (). Idx (n) )
(I) - x n . h (x (n) )

X -{ (). h(x(n))
(2)- x n • !I (x(n))

>.-SL
- f;1 '

>~f;2 '

/1 (x(n))
13 (X (n) )

12 (x (n»)
Is (x(n)

> /;3 ••• and
-I: '

"1

>~ ... and
- ';2 '

11 (x (n)) > /;... }
I ... (x(n)) -';=1 '

12 (x (n) >~}
I", (x (nl) -';2 '

(1.11) X - {x (n) . I ... (x (n)) >';:1 I... (x (n)) >SL ... and Im (x (n») > t;(1 }.
(m) - . Idx (n) ) .;... > 12 (x (n)) /;m' I ......dx (nl) "' ...

The equations (1. 9), (1. 10) and (1. 11) correspond to

( 2) X { () . /;1 11 (x {n}} >1 ';1 11 (x (n)) >1, "'and
1. 1 (I) = x n .7;' 12 (x (n) ) '~' 13 (x (n) )
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(1.13)

and
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SL. fl (x{n)) >1}
~m fm(x(n)) - ,

X(2)
= {x (n): ~21 • fdx (n)) <1 SL. J2 {x (n)j_>1 ... and

" h(x(n)) , ~3 h(x(n)) - ,

~ f2(x(n)) >1}
fm fm(x{n)) - ,

(1.14) X6ti) = {x (n): ~ml . fdx (n)) <1 f2
" fm(x (n)) 'fm

~m-l
~.

f2(x (n) ) <1 ... and
fm(x (n) ) ,

f __1 (x (n)) <I}
fm(x(n)) .

We can prove the following theorem.

THEOREM 1. 1. One has

(1. 15) en<E[H2 (~ (X (n) ) ) ] =M2 (X (n) I~)

where 2 denotes logarithm with base 2.

Here and in what follows log always denotes logarithm with base 2.

Proof. For simplicity, we shall denote fl (x (n)),f2 (x (n)), "',fm (x (n)) and f(x (n))

as follows:

(1.16)

One has clearly

(1.17)

fl fdx (n) ) ,f2=h (x (n) ) , "', fm fm (x (n)) and

f f(x(n)) =~dl+~d2+"'+f111fm'

+"'+~mJ H(~(x(n)))f".df-l.
Ken)

(1.18)

By the definition of H (~), the r. h. s. term in (1. 17) is

~IS [~~dl log(l+ ~d2 + ~3f3 +...+ ~mfm)
KCn> :E ~;fi ~dl fIll ~IIl

i-I

+ ~~d2 log (1 + ~dl + ~3f3 + ..• + fmfm ) + ...
L; ~;fi ~d2 ~2h ~d2
i=1
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(1.19)

By (1. 12), (1. 13) and (1. 14), the terms in (1. 19) are not less than followings:

(1.20)

~~l(fxJldfl+L/ldfl+"'+ fxJ1dfl)

+~2(J fzdfl+J fzdfl+···+j dp) +...
X(2) XCS) X( ... l I

Thus the theorem is proved.

REMARK 1.1. Renyi's Theorem 3 in (8) is special case of our Theorem 1.1 where
Xi (i=l, "', n) are independent and identically distributed under the condition that..
S=s;(i=I,2) is given.

THEOREM 1. 2. Let us write

(1.21)

Then the following inequality lwlds:

(1. 22)

where

(1. 23) C=max h(x) (=max h(x) )
O"'"""..;x 0"",,, ";1-x

and

(1. 24) h (x) = - xlogx- (1-x) log (1-x) for O<x<1.

Proof. Since f=~dl+~d2+"'+~mf",by (1. 16), we have

(1. 25) =~lf H(~ (x (n)) )ftdP.+~2J H(~ (x (n)) )fzdp::.xw xCn)

The notation (*J denotes the first term in ( ) of (1. 18) .
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+"'+~mJ H(t;(x)n)) )frrP/J.X(n)

By the grouping axiom of entropy [1], the first r. h. s. term in (1. 25) is

t;lf H (t; (x (n»)) fld,u.=:;lJ [H (6 (x (n) ) +~2 (x) n) ) + ' .. +t;..-i (x (n», t;m (x (n»)xw X(n)

{1. 26)
~m--.l (x (n» 1

, 'tIt;; (x (n» I
i~l

.(1. 27)

+t;m (x (n) ) H (l) Jfldp,

=t;lfx(n)[H (~t;; (x (n) ), t;m (x (n)) J fldp,

f m-I ( t;l (x (n)) ~..-l (x (n» )J fldp
+t;1 X(n)[ ( ~lt;;(X (n») H 'I:;1 t;;(x (n)) , "', 'I:;1 ~;(x (n))

i-I i-I

Since~' t;; (x (n) ~1, the T. h. s. terms in (1. 27) are less than following:
i=1

~';lfx<n)[H(~~; (x (n), t;m (x (n» Jfldp,

+~J [H(. fl (x (n) ) , • f2 (x (n) ) , "',
X(n) I; t;; (x (n» I; t;; (x (n»

i-I ,=1

From the definition of C, it follows that
Ill-I l.

H ( I; t;; (x (n)), ';m (x (n) ~C[:;m (x (n» ] 2
i=1

(1. 29)

And again by the grouping axiom of entropy, we have following:

H( •~l (x (n) )
'I; !;i (x (n) )
i=1

t;2 (x (n) )
, m 1 , ••• ,

I; .;; (X (n) )
i=1

.t;":.-l (X (n» )
I; .;; (X (n) )
i~l

(1. 30)

t;2 (x (n) )
, • 2

I; t;; (X (n) )1-1
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a-2

I:: ~i (x(n))
'Since ;-I ~1 and H (l) =0, the r. h. s. terms in (1. 30) are less than following:

t'~i (x(n))
/-1

·-2

( I:: ~;(x (n) ) ~"-1 (x (n)) )~H ~:: , a-I

'(1. 31) I:: f i (x (n)) I:: ~i (x (n))
i-I ,-I

+H( • ~dx(n)) ~2(x(n) ) ... $,.-2 (X (n)) )., .-, , , .-,
I:: ~i(X (n)) I:: ~l (X (n)) E ~i(x(n)).-1 i-I .-1

From the definition of C. it also follows that

a~":-I (x (n)) )~C( .~":- 1 (x (n)) ) i
I:: ~i (x (n) ) I:: ~i (x (n) )
i-I i-I

=C( ~,.-,f,.-l )t
Ii~Ji
i-I

~c( $e~1 )t( fj~1 t
We procede this process succesively, it follows that

';lJ H(';(x(n)))fldf-l~Ct .v';l·~jJ .vit·fj df-lxw j-, XCn). .
=CI:: .v,;!,,;, n Al'C,)

j_ 2 J "-1 J

By a similar method, it follows that

(1. 34) ~2Lcn) H (~ (x (n) ) ) f2€i.u~C v'';1 .$2 ,~, 1.12C,) +C,t .v$2' $ j ~, 1.2/,)

.and

(1. 35)

Thus we have

(1.36)

'The proof of the lower inequality of the theorem is follows from the theorem 1.1. Q. E. D.

REMARK 1. 2. Suppose that the random variables Xi (i=l, 2, "', n) are independent and
identically distributed under the condition S=Si (i=l, 2, "', m) is given. Let us write

(1. 37) Aij(l) = Ai/2)=···=}.i/n) =!3ij'

'Then from (1. 36), we have

(1.38) O~E[H($(X(n)))J~C t .v$1·$j({3ij)n.
i"pj-l

If O~!3ij<l for all i and j, then the relation (1. 38) shows how fast the equivocation
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E[H (~ (X (n) ) ] of an information e (X (n» approach to zero as n increases, irrespective'
of what a prior probability law is. We discuss this point in detail in the next section.

§2. A criterion for obtaining full information.

It this section we shall suppose that for each fixed value of S the random variables­
Xi, (i=l,2, •.•) are independent, but in general do not have the same distribution.

Let us deneote by X (n) the random n-dimensional vector with components (Xl> X2, .

•.., Xn). Let In denote the amount of information contained X (n) concerning S.
Then we have

(2.1) In=H(~)-E[H(~(X(n)))J

where H (~) is defined by (1.2).
It is easy to see that In is nondecreasing for n=1,2, '" and In~H(~). Thus Hm In

n ..... +«>

=1* always exists. If I*=H(~), we shall say that the sequence of observations {Xi},
(i=1,2, .•.) give us full information on S, where as in the case I*<H(~) we shall say
that the observations {Xi}, (i=1,2, ...) do not give full information on S. Renyi [9J
introduced a criterion for obtaining full information in the case S= {SI. sz} :

THEOREM. 2.1. If AI2(r»o for r=1. 2, "., where

(2.2) A12 Cr)= J:~ vfr(xr)f2 (xr)dx"

then the sequence of observations Xi, (i=l, 2, ..•) contains full information on S iF
and only if the series

(2.3)

is divergent.

LEMMA 2.1. One has

(2.4)

where Ai/r) and en is defined by

v'f+ v'~. )
• J for all i and j (r:tj=l, 2, "., m

V~i·~j

(1. 21) and (1. 8) respectively.

Proof of Lemma 2.1. Clearly,

(2.5) iI Ai/r)=S v'fi(x(n»)fj(x(n)) dx(n) for i:tj=1,2,···,m
"=1 XCn)

where X(n) is the n-dimensiooal Euclidian space and dx (n) stands for dXI·dx2··· dx,..
Let us denote again by XCi) the subset of X(n) on which 9n=Si and put Xw=X(n)­
XCi). Taking into account fi (x (n») is a density function, the Cauchy-Schwarz inequality-'
gives

(2,6)

and

(2.7)
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since

12.8)

we have

(2.9) ~~ ?:LJi(x(n))dx(n) and :; ::?L/dx(n))dx(n).

Therefore we have

(2.10)

Thi~ proves

Tm:O:<E\-1 2.2. If }.i/'»O for r=l, 2, •.• and j>i=l, "', m, where 1.i/') is defined by
(1. 21), the sequence of observations Xi (i=I,2"') contains full information onS if and
only if

(2.11)

(2.12)

are divergent for all i and j.

Proof. since l-x:o.:;;;e-X, if the series .E (1-}.i/')) are divergent for all i and j, one
,~,

has lim ii 1.i/')=O for all i and j. And thus by theorem 1,2 it follows that lim In
11 ..... 00 r=l » .....00

= H (~) for all i and j U>i=l, "', m). This proves the "if" part of the theorem. On
the other hand, using the inequality 1-x;?e-x/(l-x), (O:o.:;;;x:o.:;;;l), we obtain

. { . (1-}..C,))}Jl Ai/'))::exp -.E __iJ_
,~, T~ 1 }.i/')

Now if I: (I- Ai/')) is convergent for some fixed i and j, then lim Ai/')=l for some
r_! r .....~

fixed i and j, and since by assumption ,1.i/'»O for r=l, 2, •.• and j>i=l, 2, ''', m it
follows that the sequence ,1.i/') has a positive lower bound for some fixed i and j:

,1.i/'))::K>O for r=1,2, •.• and some fixed i and j.

If follows that the series .E (1-,1.i/') / ,1.i/')) is also convergent for some fixed i and j.,-,
By lemma 2. 1 this implies en has a positive lower bound. Therefore, by Theorem 1. 1
the sequence H(t;) -In has a positive lower bound too. This proves the "only if" part
of Theorem2. 2.

REMARK 2. 1. In view of the Theorem 2.1 and theorem 2.2, we have following result:
If the number of components of the state space S increase, then the obtaining full
information on S is relatively difucult. This coincides with one's intuitive sence.
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