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1. Introduction.
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The definition of a uniform structure we shall adopt is the one defined by means of
pseudometrics. All topological spaces are assumed to be uniformizable and Hausdorff,
and we use the word "space" always to mean a completely regular Trspace.

In a complete uniform space, Cauchy sequences are exactly those sequences which are
convergent. Accordingly, a sufficient condition for a space X to admit a sequentially
complete uniform structure, i. e., a uniform structure under which Cauchy sequences
converge, is that X can be embedded in a topologically complete space Y in such a
way that any sequence of points in X converges to a point of X if it ever converges
in Y. Moreover, since X must have a completion with respect to its largest admissible
structure, this condition is necessary as well. Our goal in this article is to present an
~lemantary and self-contained proof that the Stone-Cech compactification f3X can play
the role of such a complete envelope in order to discriminate topologically sequentially
.complete spaces. To be precise, we have

THEOREM 1. The following are equivalent for any space X:
(l) X admits a sequentially complete uniform structure,
(2) X admits a sequentially complete precompact uniform structure,
(3) No sequence of points in X converges to a point of ,BX- X.

2. Some equivalent conditions.

Throughout, U* will denote the (unique) uniform structure of f3X relativized to X.

LEMMA 1. The statement (2) is equivalent to
(2') X is sequentially complete with respect to the structure U*.

Proof. U* is the largest precompact structure admissible to X.

As usual, let C(X) denote the ring of real functions continuous on X, and let C*(X)
,denote the subring of C(X) consisting of bounded functions. It should be noted that the
set of pseudometrics of the form df(x,y)=lf(x)-f(y)J, fEC*(X), constitutes a
.subbase for the structure U*. If the functions f are taken from the whole ring C(X),
then the corresponding pseudometrics of course generate a uniform structure admissible
for X. By completing X relative to this structure, we obtain the Hewitt realcompac-
tification uX, which is the largest subspace of f3X subject to the condition: every
fEC(X) extend to some gEC('JX).
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LEMMA 2. Tile statement (3) is equivalent to
(3') No sequence of points in X converges to a point of uX- X.

Proof. To prove the nontrivial part. let {:c..} be a sequence of points in X which.
converges to a point p in fJX - X. In order to assert that p is in uX, it suffices to show
that !*(p)=/=oo for each f in C(X) , where f* denotes the Stone extension of f.
Suppose contrary that we had !*(P)== for somef in COO. By taking -fin place ofr
if necessary, we can take a subsequence {:c..w} of the given sequence such that (f(x..w)}
is an unbounded strictly increasing sequence of real numbers. Pick a homeomorphism
la of the real line onto itself that sends f(:c..CJt» to h, k=l, 2. .", and define gEC*(X) by­
g(x)=cos(laf(x». Then we have g(xRw)=(-l)k-l, and the sequence (g(x.)} fails to­
converge. Since the sequence (xJ converges to p, this leads to the contradiction that
g cannot be extended continuously to a function defined on fJX

The following seems to be generally accepted. Its validity rests on the fact that if if
is a continuous pseudometric on X then ll\d(p, x) belongs to C*(X) for each fixed p.
inX.

LEMMA 3. If D is an admissible uniform structure for a spue X, so is D nU*.

The most crucial part of the main Theorem 1 is furnished by the following

LEMMA 4. Let D be a uniform stnu:ttsre admissible to the spue X. If D is sequen­
tially complete, so is D nu*.

Proof. Let {:cJ be a sequence of points in X that fails to be a Cauchy sequence
with respect to the structrue D. There exist a pseudometric dED and a positive­
number e such that for any integer k there are integers m and n with m, n>k and
d(x"., x.»e. Accordingly, the sequence {:cJ has a subsequence {xRc,>} with the property­
that d(:c..<2P-D, :c..C2P»>e. For the sake of previty, we assume with no loss of generality·
that {xJ has this property, i. e., d(Xh-h x~>e for all 11. We may also suppose that
d is a bounded pseudometric.

For each positive integer p, let N p be the set of positive integers n with d(Xap-h Xh-I}
<e/3. We divide the case according as (1) N p is an innnite set for some p, or (2)
each N p is a finite set.

Case 1. Let P he an integer with N p infinite, let A denote the set of points X2..-1l.

with "EN" and let d* he the pseudometric de6ned by

d*(x,y)=ldCA, x)-dCA,,.) I

for x, y in X This is indeed a well defined pseudometric in U* as the map x-+d(A, x)
belongs to C*Cx). Moreover, since the relation

Id(a, x)-dCa,y)I~C:c,y)
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is valid for all a, x and y in X, it follows that d*(x, y)::;;'d(x, y), and d* belongs to
D as well. Since m, nENp implies

d(X2m-h X2.)::2: Id(X2.-h X2.) -d(X2m-h X2.-1) I
>\d(X2.-h x2.)-(d(X2m-h X2P-l)+d(X2P-h X2.-1))\
>e/3,

we have

for each n in N po This shows that {x.} fails to be a Cauchy sequence with respect to
the structure D nU* because N p must be cofinal in the set of natural numbers.

Case 2. Each N p is a finite set in this case, and we can construct by induction an
infinte set L of natural numbers subject to the condition that p does not belong to Nq

for any pair of distinct members p and q of L. Let L be expressed as the disjoint sum
of infinite subsets J and K, let A denote the set of points X2j-l with j in J, and let
d* be defined by

d*(x, y)= Id(A, x)-d(A,y) I

for x, y in X. As in Case I, d* is a well defined pseudometric in D nU*. Moreover,
since d(X2P-h X2Q-l»e/3 for any distinct p, q in L by the very definition of L, we
have

d*(X2i-h X2k-l)=d(A, x2k-l»e/3

for any j in J and k in K. Because J and K are both infinite, it follows that {x.}
fails to be a Cauchy sequence relative to the structure D nU*. This completes the
proof of Lemma 4 as it is now clear that a sequence of points in X is a Cauchy
sequence relative to D if and only if it is relative to D nU*.

4. Proof of Theorem 1.

We now proceed to show that the conditions (l), (2) and (3) of Theorem 1 are
equivalent. Since (2) follows from (l) by Lemmas 3 and 4, all we have to do is to
prove that (2) implies (3) and (3) implies (l).

(2) implies (3): If a sequence of points in X converges to a point of {jX, it is a
Cauchy sequence relative to the structure U*. Accordingly, it converges to a point of
X as X must be sequentially complete with respect to the structure U· by Lemma 1.
Since {jX is a Hausdorff space, this means that no sequence of points in X can converge
to a point of {jX that fails to be in X.

(3) implies (l): If a sequence of points in X fails to converge in X, it also fails to
converge in (3X by (3). This, however, means that the sequence fails to be a Cauchy
sequence relative to U· because the structure U· of X is inherited from the compact,
and hence complete, uniform space (JX. We have proved that U' is a sequentially
complete uniform structure, which clearly is admissible to X.
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As a straightforward consequence of Theorem I, we have

COROLLARY. If a noncompact space admits a sequentially complete uniform structure,
it admits a sequentially complete uniform structure that fails to be a complete
.structure.

This corollary, combined with the results of the next section. provides us with ample
supply of sequentiaIly complete uniform spaces that are not complete.

5. Conditions under which spaces admit sequentially complete structures.

Thus far, we have been concerned with characterizing spaces which admit sequentiaIly
complete uniform structures. Our purpose in this final section is to seek some topological
properties of spaces ensuring sequential completeness.

The first of our results in this section is a rather trivial one. However, its proof
.given here does. not depend upon topological completeness of realcompact spaces since
Lemma 2 is proved without using any uniformity concept; the only property of uX we
have used in proving Lemma 2 is that uX is the largest subspace of f'X over which
-every feC(X) has a real valued continuous extension.

THEOREM 2. Every rea/compact space admits a seqlU1ltially complete uniform structure.

Proof. Immediate from Theorem 1 and Lemma 2 because X=uX for X realcompact.
Let Y be a noncompact hut locally compact space embedded in a space X. H a

function f in C(¥) fulfills the condition
(*) for any positive number eo there is a compact subset K of Y such that IfCx)­

f(Y)I<e for any x and y in Y-K,
one easily checks that f extends to a function in C(X). H, conversely, every mem­
ber of C(X) satisfies the condition (*) when restricted to Y, we say that Y is inade­
quately embedded in X. In other words, Y is inadequately embedded in X if and only
if members of C(X) restricted to Y form a ring isomorphic with CCY*) where y*
denotes the one point compactification of Y. In this terminology, the equivalence
between (l) and (3) in Theorem 1 is converted into the following form:

THEOREM 3. A space X admits a sequentially complete uniform structure if and only
if X does not have a coumably infinite discrete closed subspace inadequately embedded
in X.

One may then invoke the Tietze extension theorem to obtain the following known
result.

THEOREM 4. Every normal space admits a sequentially complete .uniform structure.

REMARK. Theorem 3 does not require that a topologicaIly sequentially complete space
X be normal, nor even that bounded continuous functions on a countably infinite
discrete closed subset be extendable over X. To see this, let the space N of natural
numbers be expressed as the disjoint sum of two copies NI and N2 of itself. Then., {1N
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is the disjoint sum of (3NI and (3N2 both homeomorphic with pN. Let Y be the space
obtained from f3N by identifying a point Xl in f3N1 - NI to a point X2 in /3N2 - N 2, let
W' denote the space of ordinals not exceeding the first uncountable ordinal Q, and let
W= W' - {Q}. Then, the subspace

X=(Yx W) U(Nx IQ})

of Y x W' has Y x W' as its Stone-Cech compactification. Now, if D is an infinite
discrete closed subset of X, all but finitely many points of D lie in N x {Q} by count­
able compactness of Y x W. Hence, we may suppose that D intersects, say, NI on an
infinite set E. Since every function in C' (E) extends over X, it follows that D is not
inadequately embedded in X, and X admits a sequentially complete uniform structure
by Theorem 3. However, the function in C' (N x {QJ) taking- values i on Ni x {Q},
i=l, 2, fails to extend continuously over X.

The following analogue of Theorem 4 is also a consequence of Theorem 3.

THEORDI 5. Every countably paracompact space admits a sequentially complete
uniform structure.

Proof. Let X be a countably paracompact space and let D be a countable discrete
subspace of X which is closed in X. By Theorem 3, it suffices to show that every I in
C(D) extends over X. To see this, let {Vd} be a locally finite collection of open
subsets of X indexed by the points of D such that the only point of D contained in Vd
is d, and let Id be a function in C(X) sueh that fd(d) = fed) but Id vanishes outside
Vd for each d in D. Local finiteness of {Vd} implies that the pointwise sum of the
functions fd is a well defined function belonging to C(X). This completes the proof
of Theorem 5.

RE\IARK. Countable metacompactnc,;s cannot replace countable paracompactness in
Theorem 5. In fact, under the notation of the remark that follows Theorems 3 and 4,
the Tychonoff plank N' x W'--(p, Q) gives a counter example to the tempting conject­
ure, that countable metacompactness imply sequential completeness, where N' denotes
the one point compactification of /1,' with point at infinity designated by p.
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