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A CHARACTERIZATION OF RIGHT ORDERS IN q-RINGS
By JAE KeoL PARK

1. Introduction.

Throughout this paper, we assume that every ring has an identity 170, and every
module is unitary unless mentioned otherwise. An overring Q of R is called a (right)
classical quotient ring of R if and only if every regular element (=non-zero divisor) of
R has a two-sided inverse in Q and every element of Q has the form a1, where a=R,
5(#0) regular in R. In this case the subring R is called a right order in Q. It may be
remarked that Q is a (right) quotient ring of R in the sense of Johnson (4], p.894)
if the subring R is a right order in Q. And that the right R-module Qf is an essential
extension of Rjp.

A ring R of which every right ideal is quasi-injective is called g-ring ([2], p.73). In
this paper it is shown that a necessary and sufficient condition of a given ring R to be
embedded as a right order in a g-ring Q is that R satisfies the following conditions:

() T(ER)/R)=E(R)/R,

(2) for any regular 4 in R, bE(R)2R,

(3) every large right ideal of R which has the form L[1R where L is a large right

ideal of E(R) as ring structure is two-sided,

(4) for every large right ideal L of E(R) and every regular element & in R, LZbL.

2. g-rings and injective hulls.

If a ring Q is a right classical quotient ring of a ring R, the left R-module Q is
flat, i.e., functor XQpQ is exact. To prove the flatness by ([5], Proposition 1, p.
132), it is sufficient to show that if I be a right ideal of R, then IXrQ=IQ canoni~
cally. For if ag=0, g=cd™}, ie, ag=alcd)=C(ac)d '=0, then ac=0 and aRq=
aRcd '=ac®d'=0. The flatness of Q shall be used later.

If Mg be an R-module, let

T(M)={m=M)| there exists regular b in R, mb=0}

J.P. Jans ([3], Lemma 1, p.37) characterizes T(M) using the concept of quotient
ring of R as follows.

PROPOSITION 1. If R has a right classical quotient ring Q, then T(M) is the kernel
of the map m—>mQrl of My into MXQ.
Also Jain, Mohamed and Singh ([2], Theorem 2,3, p.74) verify the following.
PROPOSITION 2. The following conditions are equivalent.
) R is a g-ring,
(2) R is right self-injective, and every right ideal of R is the form el, where e is
an idempotent in R, and I is a two-sided ideal in R.
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(3) R is right self-injective, and every large right ideal of R is two-sided.

Let Mg be any R-module. In [1], Eckmann and Schopf have shown that the minimal
R-injective extension always exists and this coincides with the maximal R-essential
extension and equals to R-injective, essential extension of M.

In this case E(M;) denoted the minimal injective extension of M; and is called the
injective hull of Mz And particularly E(R) denoted the injective hull of Re

In general the injective hull E(R) of Rp doesn’t have ring structure. But under the
appropriate condition, the R-module E(R) can have ring structure. The following
states the condition of R so that E(R) has ring structure having R as a subring.

THEOREM 3. If R satisfies the condition T(E(R)/R)=E(R)/R, then we can give a
ring structure to E(R) having R as a subring.

Proof. At first we show that Homa(E(R)/R, E(R))=0. If there exists f in Hom,
{E(R)/R, E(R)) such that Im(f) is a non-zero R-submodule of E(R). Then Im( )N
RF#0 because E(R) is an R-essential extension of R. Now take a nonzero element a<
Im(ANR, a=f(&) for some &F&=c+Rs=ER)/R. Since T(E(R)/R)=E(R)/R, there
exists a regular element # in R such that &=(c+R)b=cb+R=0 i.e., db=R. It follows
a=0 from the fact f(&@)=F(&)b==ab=0 and b is regular in R.

Now form the short exact seguence

0-—>R—>E(R)—>E(R)/R—>0, 1€))

And apply the left exact functor Homp(R, E(R)) to (1), we obtain the following
exact sequence (2) from the fact Homz(E(R)/R, E(R))=0 such that

0—>Homg(E(R), E(R))—>Homg(R, E(R))—>0 @
i.e., Homg(E(R), E(R))~"Homs(R, E(R)).

Since R has identity, we can identify E(R) and Homg(R, ECR)) as an additive
group structure naturally under the mapping 2 in E(R) to ¢; in Homp(R, E(R)). And
now &; has the unique extension ¢, in Homp(E(R), E(R)) by (2). To define the multi-
plication ¢ on E(R). let a,b be elements of E(R). And define such as acb=¢,(5),
then E(R) has a ring structure having R as a subring. Thus the proof is completed.

3. Characterization.

The above theorem shows that the injective hull E(R) has a ring structure under the
condition T(E/(RY/R)=E(R)/R. From this fact we can deduce the following main
result which characterizes right orders in g-rings.

THEOREM 4. A necessary and sufficient condition that a given ring R can be embed-
ded in a g-ring Q as a right order is that R satisfies the following conditions:
1) T(ER)/R)=E(R)/R,
(2) for any regular b irn R, BE(R)2R, ,
(3) every large right ideal of R which has the form L(\R where L is a large right
ideal of E(R) is two-sided,
{4) for every large right-ideal L of E(R) and every regular b in R, LCBL.
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Proof. Assume that R is a right order in a g¢-ring Q. If we show E(R)=0Q, then
the condition (1) and (2) are easily verified because each regular element in R annihi-
lates only 0 in Q.

Since Q=1{ab"'|a=R, b regular in R}, Qp is an essential extension of Rg which
mentioned already. To show Q=FE(R), it remains to prove that the overring Q of R
is an R-injective module. Let A and B be R-modules such that BEA and f: B—Q be
an R-module homomorphism, then f can be shifted to f: B/Ker(f)—Q which is a
monomorphism. Thus we can assume f: B—Q as an R-module monomorphism at first
without loss of generality.

If f: B—Q is an R-module monomorphism, then T(B)=T(Im f)=0 because T'(Imf)
fR=0 and Q is an essential extension of R. Therefore we can conclude the morphism
B—BX:Q which sending 4 to Q1 is an R-monomorphism by Proposition 1. And the
given R-monomorphism f: B—(Q induced a Q-homomorphism f&1 : BRrQ—QX:Q.
Since pQ is a flat module, BRQ—0X:0Q is a Q-monomorphism by the the left exactness
of the functor ®zQ. Thus we get a Q-homomorphism f: ARQ0—QRQ such that
-each rectangle of the following diagram commutes by the right self-injectivity of Q.

Bg—————> (BRQeQ)e———— —’(A®€Q)a
fI 31 7

l l isomorphism v

Gy QDD 3y

This gives an R-homomorphism f’ of A into Q via the map f. This f’ is an R-ex-
tension of f to A. Therefore Qp is R-injective. Thus Q=E(R). From this fact Q=E
(R), the condition (1) and (2) are verified immediately. To show the condition (3),
let L be a right ideal of E(R)=0Q such that L\ R is large in R. Since Q is a g-ring,
the given large right ideal L is two-sided in Q by Proposition 2. And since (L1 R)Q=L,
RUILNRCSR(LNR)Q=RLCL i.e., LNR is a left ideal in R. The condition (4) is
clear. Conversely assume the given condition (1), (2), (3) and (4). For any a in R,
the left multiplication a; is an element of Homp(R, E(R))~Hom(E(R), E(R))~E(R).
And the map a—a, is a ring monomorphism of R into E(R).

Now let » be a regular in R, then 4, is an automorphism of E(R); For &, has zero
kernel because if &, has non-zero kernel, it’s restriction to R has also non-zero kernel.
And by the condition (2), since 5, E(R) is an R-injective module containing R, 5,(E
(R))2E(R). This means that b is an automorphism of E(R). In this case let ¢ be the
inverse of b;, then ¢(1) is the inverse of & Now let ¢ be any element in E(R), then
there exists a regular & in R such that gb=a=R exactly by the condition (1). It follows
that g=ab~! and we have shown that R is a right order in the ring E(R).

Since E(R)=Q is a ring with identity, to show E(R)=Q is right self-injective it is
sufficient to prove that every Q-homomorphism from I to Q is a left multiplication by
an element of Q, where I is a right ideal of Q, i.e., Q satisfies the Baer's condition.
Now let feHomy(I, Q), where I'is a right ideal of Q. Then fo=f|I1R belongs to
Homz(INR, Q). The R-injectivity of Q=E(R) implies that fo(x)=ax for some ¢ in R.
And I=(INR)Q, ie., I=(INR)Q={ab'|a=INR, bregular in R}. For every element
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i<, i has the form zy™!, z=I{1R, y regular in R. Therefore we have f()=Ff(xy >
=)y 1= f(x)y '=Cax)y '=a(zy VD)=ai, l.e., Q, satisfies the Baer's condition.

On the other hand to show E(R)=Q is a g¢ring, by Proposition 2, it remains to
prove that every large right ideal of Q is two-sided. Let L be a large right ideal of Q,
then LR is also a large right ideal of R. For let I be a right ideal of R such that
(LORNI=0, then LNIQ=0. This fact follows from that IQ is the right ideal of Q-
which is generated by I, And IQ={zy '|z<1, y regula in R}. Therefore we have I=0,
and this means that LNR is large in R. Since LR is twosided in R by the cond-
iton (3), we have (LNR)RSLNR and R(LNR)SLNR. And since L=(L1R)Q, RL.
=R(LNRQS(LNR)Q=L. Now to prove QL=0Q((LNRIQD L, for any ¢=Q, g=a
57! and r=L such that r==¢d™), ¢=LNR, then gr=(ab " D(cd D =Cac)(db")"!, where
cb'=bc’, ¢ ,b'=R, b regular in R. Since cb'=bc’, ¢'=btch’=L by the condition (4)
and the fact e=L{JR. The fact RLCL implies ac'=L. Therefore gr=(ac)(db) =
L because db’ is regular in R and ac’'=sLNR, i.e., QLSL. Thus we have the fact
that Q is a g-ring and now the proof is completed.
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