A CHARACTERIZATION OF RIGHT ORDERS IN q-RINGS

BY JAE KEOL PARK

1. Introduction.

Throughout this paper, we assume that every ring has an identity $1 \neq 0$, and every module is unitary unless mentioned otherwise. An overring Q of R is called a (right) classical quotient ring of R if and only if every regular element (=non-zero divisor) of R has a two-sided inverse in Q and every element of Q has the form ab^{-1} , where $a \in R$, $b(\neq 0)$ regular in R. In this case the subring R is called a right order in Q. It may be remarked that Q is a (right) quotient ring of R in the sense of Johnson ([4], p. 894) if the subring R is a right order in Q. And that the right R-module Q_R is an essential extension of R_R .

A ring R of which every right ideal is quasi-injective is called q-ring ([2], p. 73). In this paper it is shown that a necessary and sufficient condition of a given ring R to be embedded as a right order in a q-ring Q is that R satisfies the following conditions:

- (1) T(E(R)/R)=E(R)/R,
- (2) for any regular b in R, $bE(R) \supseteq R$,
- (3) every large right ideal of R which has the form $L \cap R$ where L is a large right ideal of E(R) as ring structure is two-sided,
- (4) for every large right ideal L of E(R) and every regular element b in R, $L\subseteq bL$.

2. q-rings and injective hulls.

If a ring Q is a right classical quotient ring of a ring R, the left R-module $_RQ$ is flat, i.e., functor \bigotimes_RQ is exact. To prove the flatness by ([5], Proposition 1, p. 132), it is sufficient to show that if I be a right ideal of R, then $I\bigotimes_RQ\cong IQ$ canonically. For if aq=0, $q=cd^{-1}$, i.e., $aq=a(cd^{-1})=(ac)d^{-1}=0$, then ac=0 and $a\bigotimes_Q=a\bigotimes_Cd^{-1}=ac\bigotimes_dd^{-1}=0$. The flatness of $_RQ$ shall be used later.

If M_R be an R-module, let

 $T(M) = \{m \in M \mid \text{ there exists regular } b \text{ in } R, mb = 0\}$

J.P. Jans ([3], Lemma 1, p. 37) characterizes T(M) using the concept of quotient ring of R as follows.

PROPOSITION 1. If R has a right classical quotient ring Q, then T(M) is the kernel of the map $m \longrightarrow m \otimes_{\mathbb{R}} 1$ of $M_{\mathbb{R}}$ into $M \otimes_{\mathbb{R}} Q$.

Also Jain, Mohamed and Singh ([2], Theorem 2, 3, p. 74) verify the following.

PROPOSITION 2. The following conditions are equivalent.

- (1) R is a q-ring,
- (2) R is right self-injective, and every right ideal of R is the form eI, where e is an idempotent in R, and I is a two-sided ideal in R.

(3) R is right self-injective, and every large right ideal of R is two-sided.

Let M_R be any R-module. In [1], Eckmann and Schopf have shown that the minimal R-injective extension always exists and this coincides with the maximal R-essential extension and equals to R-injective, essential extension of M_R .

In this case $E(M_R)$ denoted the minimal injective extension of M_R and is called the injective hull of M_R . And particularly E(R) denoted the injective hull of R_R .

In general the injective hull E(R) of R_R doesn't have ring structure. But under the appropriate condition, the R-module E(R) can have ring structure. The following states the condition of R so that E(R) has ring structure having R as a subring.

THEOREM 3. If R satisfies the condition T(E(R)/R)=E(R)/R, then we can give a ring structure to E(R) having R as a subring.

Proof. At first we show that $\operatorname{Hom}_R(E(R)/R, E(R)) = 0$. If there exists f in $\operatorname{Hom}_R(E(R)/R, E(R))$ such that $\operatorname{Im}(f)$ is a non-zero R-submodule of E(R). Then $\operatorname{Im}(f) \cap R \neq 0$ because E(R) is an R-essential extension of R. Now take a nonzero element $a \in \operatorname{Im}(f) \cap R$, $a = f(\bar{c})$ for some $\bar{c} = c + R \in E(R)/R$. Since T(E(R)/R) = E(R)/R, there exists a regular element b in R such that $\bar{c}b = (c + R)b = cb + R = 0$ i. e., $cb \in R$. It follows a = 0 from the fact $f(\bar{c}b) = f(\bar{c})b = ab = 0$ and b is regular in R.

Now form the short exact sequence

$$0 \longrightarrow R \longrightarrow E(R) \longrightarrow E(R)/R \longrightarrow 0, \tag{1}$$

And apply the left exact functor $\operatorname{Hom}_R(R, E(R))$ to (1), we obtain the following exact sequence (2) from the fact $\operatorname{Hom}_R(E(R)/R, E(R)) = 0$ such that

$$0 \longrightarrow \operatorname{Hom}_{R}(E(R), E(R)) \longrightarrow \operatorname{Hom}_{R}(R, E(R)) \longrightarrow 0$$
 (2)

i. e., $\operatorname{Hom}_R(E(R), E(R)) \cong \operatorname{Hom}_R(R, E(R))$.

Since R has identity, we can identify E(R) and $\operatorname{Hom}_R(R, E(R))$ as an additive group structure naturally under the mapping a in E(R) to a_L in $\operatorname{Hom}_R(R, E(R))$. And now a_L has the unique extension ϕ_a in $\operatorname{Hom}_R(E(R), E(R))$ by (2). To define the multiplication \circ on E(R), let a, b be elements of E(R). And define such as $a \circ b = \phi_a(b)$, then E(R) has a ring structure having R as a subring. Thus the proof is completed.

3. Characterization.

The above theorem shows that the injective hull E(R) has a ring structure under the condition T(E/(R)/R) = E(R)/R. From this fact we can deduce the following main result which characterizes right orders in q-rings.

THEOREM 4. A necessary and sufficient condition that a given ring R can be embedded in a q-ring Q as a right order is that R satisfies the following conditions:

- (1) T(E(R)/R)=E(R)/R,
- (2) for any regular b in R, $bE(R)\supseteq R$,
- (3) every large right ideal of R which has the form $L \cap R$ where L is a large right ideal of E(R) is two-sided,
- (4) for every large right ideal L of E(R) and every regular b in R, $L\subseteq bL$.

Proof. Assume that R is a right order in a q-ring Q. If we show E(R)=Q, then the condition (1) and (2) are easily verified because each regular element in R annihilates only 0 in Q.

Since $Q = \{ab^{-1} | a \in R, b \text{ regular in } R\}$, Q_R is an essential extension of R_R which mentioned already. To show Q = E(R), it remains to prove that the overring Q of R is an R-injective module. Let A and B be R-modules such that $B \subseteq A$ and $f: B \rightarrow Q$ be an R-module homomorphism, then f can be shifted to $f: B/\text{Ker}(f) \rightarrow Q$ which is a monomorphism. Thus we can assume $f: B \rightarrow Q$ as an R-module monomorphism at first without loss of generality.

If $f: B \to Q$ is an R-module monomorphism, then $T(B) = T(\operatorname{Im} f) = 0$ because $T(\operatorname{Im} f) \cap R = 0$ and Q is an essential extension of R. Therefore we can conclude the morphism $B \to B \otimes_R Q$ which sending b to $b \otimes 1$ is an R-monomorphism by Proposition 1. And the given R-monomorphism $f: B \to Q$ induced a Q-homomorphism $f \otimes 1: B \otimes_R Q \to Q \otimes_R Q$. Since RQ is a flat module, $B \otimes_R Q \to Q \otimes_R Q$ is a Q-monomorphism by the the left exactness of the functor $R \otimes_R Q$. Thus we get a Q-homomorphism $R : A \otimes_R Q \to Q \otimes_R Q$ such that each rectangle of the following diagram commutes by the right self-injectivity of Q.

This gives an R-homomorphism f' of A into Q via the map f. This f' is an R-extension of f to A. Therefore Q_R is R-injective. Thus Q = E(R). From this fact Q = E(R), the condition (1) and (2) are verified immediately. To show the condition (3), let L be a right ideal of E(R) = Q such that $L \cap R$ is large in R. Since Q is a q-ring, the given large right ideal L is two-sided in Q by Proposition 2. And since $(L \cap R)Q = L$, $R(L \cap R) \subseteq R(L \cap R)Q = RL \subseteq L$ i. e., $L \cap R$ is a left ideal in R. The condition (4) is clear. Conversely assume the given condition (1), (2), (3) and (4). For any R in R, the left multiplication R is an element of R into R into R. And the map $R \to R$ is a ring monomorphism of R into R into R.

Now let b be a regular in R, then b_L is an automorphism of $E(R)_R$. For b_L has zero kernel because if b_L has non-zero kernel, it's restriction to R has also non-zero kernel. And by the condition (2), since $b_L E(R)$ is an R-injective module containing R, $b_L(E(R)) \supseteq E(R)$. This means that b is an automorphism of E(R). In this case let ϕ be the inverse of b_L , then $\phi(1)$ is the inverse of b. Now let q be any element in E(R), then there exists a regular b in R such that $qb=a \in R$ exactly by the condition (1). It follows that $q=ab^{-1}$ and we have shown that R is a right order in the ring E(R).

Since E(R)=Q is a ring with identity, to show E(R)=Q is right self-injective it is sufficient to prove that every Q-homomorphism from I to Q is a left multiplication by an element of Q, where I is a right ideal of Q, i.e., Q satisfies the Baer's condition. Now let $f \in \text{Hom}_Q(I,Q)$, where I is a right ideal of Q. Then $f_0=f|I\cap R$ belongs to $\text{Hom}_R(I\cap R,Q)$. The R-injectivity of Q=E(R) implies that $f_0(x)=ax$ for some a in R. And $I=(I\cap R)Q$, i.e., $I=(I\cap R)Q=\{ab^{-1}|a\in I\cap R,\ b \text{ regular in } R\}$. For every element

 $i \in I$, i has the form xy^{-1} , $x \in I \cap R$, y regular in R. Therefore we have $f(i) = f(xy^{-1})^2$ = $f(x)y^{-1} = f_0(x)y^{-1} = (ax)y^{-1} = a(xy^{-1}) = ai$, i. e., Q_0 satisfies the Baer's condition.

On the other hand to show E(R)=Q is a q-ring, by Proposition 2, it remains to prove that every large right ideal of Q is two-sided. Let L be a large right ideal of Q, then $L \cap R$ is also a large right ideal of R. For let I be a right ideal of R such that $(L \cap R) \cap I = 0$, then $L \cap IQ = 0$. This fact follows from that IQ is the right ideal of Q which is generated by I. And $IQ = \{xy^{-1} | x \in I, y \text{ regula in } R\}$. Therefore we have I = 0, and this means that $L \cap R$ is large in R. Since $L \cap R$ is two-sided in R by the condition (3), we have $(L \cap R)R \subseteq L \cap R$ and $R(L \cap R) \subseteq L \cap R$. And since $L = (L \cap R)Q$, $RL = R(L \cap R)Q \subseteq (L \cap R)Q = L$. Now to prove $QL = Q((L \cap R)Q) \subseteq L$, for any $q \in Q$, $q = ab^{-1}$ and $r \in L$ such that $r = cd^{-1}$, $c \in L \cap R$, then $qr = (ab^{-1})(cd^{-1}) = (ac')(db')^{-1}$, where cb' = bc', c', $b' \in R$, b' regular in R. Since cb' = bc', $c' = b^{-1}cb' \in L$ by the condition (4) and the fact $c \in L \cap R$. The fact $RL \subseteq L$ implies $ac' \in L$. Therefore $qr = (ac')(db')^{-1} \in L$ because db' is regular in R and $ac' \in L \cap R$, i. e., $QL \subseteq L$. Thus we have the fact that Q is a q-ring and now the proof is completed.

Acknowledgement. The author wishes to thank Professor Wuhan Lee for his suggestion and encouragement in the preparation of this paper.

References

- [1] B. Eckmann and A. Schopf, Über injective Modula, Archiv Math., 4(1953), 75-78.
- [2] S. K. Jain, S. H. Mohamed and Surject Singh, Rings in which every right ideal is quasi-injective, Pacific J. Math., Vol. 31, No. 1 (1969), 73-79.
- [3] James P. Jans, On orders in quasi-Frobenius rings, J. Algebra 7(1967), 35-43.
- [4] R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc., 2(1951), 891—895.
- [5] Joachim Lambek, Lectures on Rings and Modules, Blaidell Publish. Waltham Mass. 1966.

Seoul National University