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1. Introduction

Recent calculations of the critical masses
of superdense stars(white dwarfs, neutron
stars and hyperon stars) have shown
that they are about one solar mass irre-
spective of their assumed equations of
state. This remarkable fact has not been
explained in terms of the theoretical
grounds. In the present investigation, a
rather simple explanation has been attem-
pted. Since one solar mass is also a
typical value for the ordinary stars, the
latter being in the range of one tenth up
to 60 solar masses, we may say that the
ordinary star has a loosely defined “critical
mass” of around 1 solar mass. We may
make this statement somewhat plausible
by the following argument in section 2,

!

Then the existence of the more sharply
defined critical mass in case of superdense
stars is investigated in section 3.

2. Mass of ordinary stars

We shall start with the equation of
gravitational equilibrium for the star,
dar __ Gpm ¢)

=
where P, p, m are the pressure, density
and mass as functions of r, distance from
the center, and G the gravitation constant
=(.67xX10°% ¢c.g.5.

By ordinary stars, we mean the stars
that have central temperature of the order
of 107~108 K at the densities of 0.1~
1o0g/cm®.  As was pointed out by Zel-
dovich (Zeldovich and Novikov, 1971)
these stars are the “hot stars” to the
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contrast to the “cold stars® which will
be considered in section 3,

In the overall temperature and the
density ranges of the “ordinary stars”,
we may assume the equation of state for
the ideal gas with the radiation pressure
of photons as a necessary correction to
the gaseous pressure of the plasma. The
ratio of contribution to the total pressure
by the photon to that by the plasma, how-
ever, is rather critical in determining the
mass of the ordinary stars from the point
of view of “the cloud-bound physicist?,
the classical invention of Eddington
(Eddington 1926).

The total pressure p is composed of
two parts, Pr due to the radiation and
P; due to the matter

P==PR4~PG:n§a14v+~ﬁ;arp71 (2)
where a is the black body constant=
7k /15(ch)*=7.56> 107" c.g.s., kis Bolt-
zmann  constant  (=1.38%107'%c.g.s.),
¢ 1s the mean molecular weight, and
my 1s the mass of hydrogen atom
(=1.67x107%g).

If we denote the ratio Ps/P by 3, then
the ratio of Pr to P; is given by

Pro 16 @ gy
Pe = g - (Tedy

Hence the ratio is proportional to the
cube of 7/p?, while the stellar mass M
also depends on this parameter, as is
shown below(Zeldovich and Novikov

1971).

From the dimensional consideration of
eq. (1), it is clear that

P GM
"—<R>_': p\ —N'Rzi‘: (4‘)

where () denotes the appropriate
average taken over the whole star and M
and R are the total mass and the radius

. M . .
of the star. Since p~ g3 > (4 1s written

as

P=Fk GM%p*", (5)
where %, isa constant (~1) depending
on the method of taking average. From

) and (5), we have
B e\ 1 a-pt
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~100 a #253 ~(solar mass), (6)

where we may note the appearance of

hic > .
a factor ( 2 )Zmﬂ in this mass for-
My

mula. As p~I1, the mass is mainly
determined by this factor for given value
of g.

Eq. (6), however, does not give any
meaningful range of mass, because the

(—=p*

factor 5 varies from 0 to infinity

as 8 changes from 1 to 0.
From eq. (5), it is immediately clear

that in case of Poc,og the mass M is
uniquely determined for the group if the
stars having the same proportionality
constant. This is the case of the polytropic
star (Pocp)with y= 3— or the polytropic
index n=3. In this case, the proportionality
constant is relalated to the entropy per
particle. If the the chemical composition
(i.e.) is the same then the total
entropy S remains the same for these stars.

In other words, the stars of the same
¢ and S have the same mass if Pocp$.
It follows that Pccp® is an important
case of determining some range of the
stellar mass if the range of the entropy
is known.

We will see the case of “cold” stars
as a rarticular one where S$=¢ (the
range is 0. too), which will be considered
in the next section.



3. The superdense star

By the superdense star or cold star,
we mean the star at the end of its
evolution having exhausted its nuclear
fuel and at extremely high density after
the continued contraction. Their density
ranges from 10°—10" g/cm® (white
dwarf) to 10''—10'* g/cm® (neutron star),
and their states are independent of T
unless T > 10°, so we may use zero
temperature approximation of the dege-
nerate matter.

In case of the cold star, the main
contribution to the pressure and the
energy comes from the degenerate gas of
the electron for the white dwarf and of
the neutron for the neutron star respec-
tively.

The degenerate electron pressure P, and
the density o are given by (Chandrasek-

har 1939)
Trme465
Pe= ——gz:rﬁf(x) <.
{rmym,>cd |
p= T 1, ®
where m, is the electron mass, 4 is Planck’s
constant (6.625X107% c.g.s.), :c:—i’fé»,

pr 1s Fermi momentum, and f(z) is given
as
f@)=z(22*—3)(2*+ 1%
+3 sinklz, (%)
which goes assymptotically to

l %—x5 when z{1 (non-relativistic

: case), (10)
| 2z* when z)1 (relativistic case).
| (11)
For the neutron star, the electronic
mass m. should be replaced by the neutron
mass 7mx.
Hence f{rom @ & Q0 dD, we
have as limitting cases
(a) non-relativistic

5
Pocpy (12)

(b) relativistic

4

POCp 3 (13)
which can be alternatively expressed
as Pocp’, the well known polytropic
relation with the polytropic index n=

1 3
7?( 2—2— and 3.

For the “cold” star, we take the case
(b), i.e. the relativistic one. Then, we

have from (7), (®), and QD)

ke 3n® \% 4
b= 1272 ( mupt )3 ps- ey

Substitution of (14) into (5) yields
the Chandrasekhar limit_as

3
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=5.87:2-(solar mass), 15)
For the neutron star, the similar
calculation leads to (me.—my)
M=0.7 (solar mass), (16)

which is the Oppenheimer-Volkoff limit.

At the super-nuclear density p>10!4
g/cm?®, the uncertainty in the knowledge
of the equation of state due to diversity
of particle interactions prevents us from
obtaining the detailed study of superdense
matter. Ambartsumian and Saakyan (1969)
found that there appear, besides neutrons
and a small number of protons and
electrons, many other types of elementary
particles e.g. muons, pions, hyperons.
But theoretical study (Harrison, Thorne,
Wakano and Wheeler 1965) has shown
the existence of denumerable infinity of
critical masses that get smaller as the
central density tends to infinity provided
the equation of state follows y-law (i.e.
Pocpr) asymptotically.

This means that even if the central
density of the “cold” star approaches
infinity the critical mass remains around
i solar mass!



4. The significance of one solar mass

As we have previously noted, the

appearance of ( he ): in the mass
Gmy?*

formula (5) seemes to be responsible for

producing the right order of magnitude

of a solar mass (2x10%g). The dimen-

. hc .
sionless number, =5, in the paren-
H

thesis has been argued frequently in
various literatures in connection with the
attempt to find any link between the
cosmical and the subatomic phenomena,
for it contains the fundamental constants,
hc
Gmyt
1.691 X 10°® involved in our stellar prob-
lem is contrasted with the analogous

G, mu, h, and . The number

hC
number (the fine structure constant) T

=137.037 in electromagnetic Iinteractions
of the subatomic physics. Wheeler has
pointed out (Wheeler 1964) that “the
enormity of this number is testimony to
the many nucleons that have to be present
before gravitational interactions over-
whelm all other forces”.

A question remains, however, “Why a
solar mass?” in view of its rather ubiqui-
tous appearance as the critical mass in
cases we have seen. One solar mass
takes some (—h—c)g times of mu, or
GmHZ ’

3 3
. h? c?
is equal to CEma - On the other hand,

the simplest expression of a mass con-
taining G, h, my and ¢ is known to be

ke \F .. ( ke \ ¥
( . ) times my, or equal to o )

which contains actually no m, at all.

This hypothetical mass has been unpo-
pular, for it was too large compared to
the nucleonic mass my, No particle of

importance with this mass has been found
so far, although some authors believe in
favor of its fundamental significance
(Zeldovich and Novikov 1971).

Now what have we got to say about
our “one solar mass”? Do we have
anything better in favor of “our sun”
than of the hypothetical mass? Since we
are considering the link between the
long-range (i.e. gravitation) and the
short-range force (i.e. radiation or dege-
nerate pressure) we need to re-examine
these 4 constants of their roles in their
inter-relationship.

G and my; go together with the gravi-
tational force in the equation of
equilibrium (1). The constants ¢ and %
stem from the radiation law in case of
the ordinary stars, but with the cold star
they come from the relativistic expression
of energy or momentum in the formula
giving the degenerate gas pressure. While
the radiation law applies in any range
of T, the law of degenerate gas pressure
is almost independent of T, or only
exact at 7=0. This fact seems to be the
cause of the distinction in the range
of mass of ordinary stars and superdense
stars.

While the instability in the ordinary
star of excessive mass is apt to cause the
explosion, the superdense star beyond
the critical mass is known to collapse
gravitationally without any choice of

alternative  equilibrium  configuration
(Harrison, Thorne, Wakano and Wheeler,
1965).

As to the reason for the number

3
( szm?-“)z times m; giving the right
H

order of magnitude of a solar mass, we

may ask “Why is (——C—fi-c—-z—) raised to ~S—

My
power and not to any other value ?* For
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instance ;5 gives the hypothetical mass

hic \*% he \F .
R
is too large as compared to that of an
elementary particle, and too small to be

2
actual solar mass. Its second power,( ke )
Gmy®

times my, gives ~10*° solar mass which is
presumably as large as the mass of the
universe !

If we recall the argument at the end
of section 2, the answer might be as
follows:

From the the

in eq.(5)

derivation of eq.(6),

exponent ‘5 is traceable

where M is raised to %— power with G

to the first although it seems at first quite

But

arbitrary to make it % the sum

of the exponents of M and p should be
2 from the dimensional requirement of
the eq.(5). Hence the condition of

polytropic relation Pocp’ with 7='§—(n=

3) need to be changed to other value of
7 in order to get other exponent for

hc .
( O ) In other words, the necessity

{3

f he
,~ power o (

My
+-value of the polytropic relation. In this
context, it might be worth of noting the
fact that the pure radiation behaves as a

¢

5 ) stemmed from

gas of polytropic gas of T:%,.*

So we have to change the law of
radiation to get other power for the
hC

mu

number (~ ;

) We may, as a matter

of fact, trace the origin of the exponent

+ This is no coincidence since the extremely relativistic particle in the

to the same law.

5. Discussion

We have so far, at least, made it
plausible that the critical mass of the
superdense star and the observed mass
of ordinary star hover around one solar
mass with some physical reason. In view
of complexity and diversity in the physical
structure of the star, the result should be
far from being called any proof or the
like. It is easily seen that the limiting
mass M, (pe—00), should be about one
solar mass, in case of assymptotic 7-law

for the equation of state with r:_‘;,,,.

For other values of 7, our simplified
argument does not apply and we have to
treat the problem in full detail instead
of using the averaged physical quantities,
Po,T etc. in eq (4, &, and (.
Since we have 1<7<2, the lower limit
being required against the dynamical
instability, the upper by the causality
(i.e. the speed of sound v: and the speed of

light ¢ with the relation y—1= (U; )2),

we may {airly expect the limiting mass
should not be drastically different from

its value when r=-%—, i.,e. about one
solar mass.
It seems interesting that our sun,

besides its coincidental proximity to us,
might possess far more fundamental
significance in understanding the possible
link between the universe and the micro-
universe.

The author is indebted, in the present

cold star behaves more like

photon as pc>»me® in the energy expression E:(p’c7+mﬁc‘)%.
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