Bull. Korean Math. Soc. 9
Vol. 8 (1971), pp.9-17.

A note on the well-formed formulas of a pure
functional calculus of the first order

Joseph T. Ryan

Abstract

The purpose of this note is to use primitive recursive functions and pre-
dicates similar to those presented by Davis [2] to show the well-known
result first proved by Godel in [3] that the well-formed formulas of a pure
functional calculus form a recursive set. The technique shown in this paper
immediately suggests a unique approach to Theorem proving using a com-
puter.

1. Definitions

A pure functional calculus of the first order, F's, is defined by Church
{1] to be the logistic system having as its primitive symbols the c¢ight
improper symbols

2l~G) v
and the infinite list of individual variables
XY 2Z X Y 21 X2 Vo Bgeeenen

Also some or all of the following, including either at least one of the
infinite lists of functional variables or at least one functional constant, are
included: the infinite list of propositional variables

S DQTSD G 7S Dreeeene
and, for each positive integer #, an infinite list of #-ary functional"‘x;aria—
bles, namely, the infinite list of singularly functional variables
F'' G* HY Fi' G Ht Fil......

the infinite list of binary functional variables

10 J. T. Ryan
F? G 02 F2 G2 H?2 Fiaeannnn.n... and so on

including any number of individual eonstants, any number of singularly
functional constants, binary functional constants, ternary functional cons—
tants, etc.

The formation rules of F!s are given by Church [1] as:

(1) A propositional variable standing alone is a welll-formed formula
(henceforth referred to as wff).

(2) If fis an m-ary functional variable or an #-ary functional constant,
and if a,, @y ..., @, are individual varfables or individual
constants or both (not necessarily all different), then f(a@., @z very @5}
is a wff.

(3) If I is a wff then ~1I" is a wff.

(4) If I" and 4 are wff then [I'D4] is a wff.

(5) If I'is a wff and ¢ is an individual variable, then (yVa) I' is a wff.
We also define a number of functions and predicates suggested by Davis
(1958):

D1. The function x—=y is defined by
x—y if xgy}

0 if 2y
D2. If P(y, x™) is an (z+41)-ary predicate then

-

J(z,x™) =59 P(y,x»)
ot

is understood to be the (z-1)-ary total function that satisfies the eguation
S(z, ™) =min,[y<z/\P(y, ™)]
where this is defined and

flz,x™)=0
elsewhere.

D3. The function Pr(z) is defined as the »th prime in order of magni-
tude, where we arbitrarily take the Oth prime equal to 0, namely
Pr{0)=0

A note on the wif of a pure functional calculus of the first order 11

Pr(n)1+1

Pr(n+1)= o [Prime (3) N\y>Pr(z)]
y=0

where Prime(x) states that x is a prime number.

D4. Let P(x,, -+, x,) be an z-ary predicate. Then, by the extension of

P, written

(X Xay ooy XalP(Xy X2yeeens Xn)}-
we shall mean set of all n-tuples (@, @ -...,a,) for which Pla,as....,
a,) is true.

D5. The predicate G/ is defined by the equation
7 Gl x= 550[(Pr(n)’lx)/\N(Pr(”)’“)\x)]
y=

(If x is the Godel number of M, where M consists of the symbols 7y, V2, =7,
then if 0<#<p, » GI x is the number associated with 7, whereas if z=0
or #>p, then z Gl x=0.)

D6. The function L(x) is defined by the equation

Lx)= 9 [Glx>o)/_/:\0 (y+i+1) GI 2=0]

y=0

D7. The expression (x/y) states that y divides x evenly.
2. The recursiveness of the wff of F'»

Using the above functions and predicates it is possible to demonstrate
that the wff of F'# form a recursive set. We proceed to arithmetize the
formal system as follows:

For the primitive symbols of F's, we make the correspondences:

L 2 J ~ C,) V

[T DT 111

2 3 4 5 6 7 8 9
For the infinite list of individual variables (which can be denumerably

infinite in number), we make the correspondences:

12 J. T. Ryan

X ¥y zZ X N & X

T U O U U e

11 112 11% 11* 11° 11 117
For the individual constants:

f g 2 i & b |2

LDl] T

13 13% 13® 13¢ 13° 13° 13°
For the propositional variables:

q r S Dog 7 oS

BEERRARE

17 172 178 17% 17° 176 177 178
For the singularly functional variables:

Gt H' Fp G HY Fp?

I U A s

19 19% 19° 19* 19° 19° 197
For the singularly functional constants:
Pt RS Pr@Y

1T I

23 232 233 23¢ 23% 23°
For the binary functional variables:
Fz G2 H? F3? G2

29 29% 29% 29 29°

For the binary functional constants:
PZ Qz Rz SZ Plz le

IIIIII

31 312 31° 31* 31° 31°
For the z-ary functional variables:

L G Hr Fr

Pr(7+n) [Pr8+n)1 [Pr(8+m)® [Pr(8+mn)]*

Finally, for the z-ary functional constants, we make the correspondences:

A note on the wff of a pure functional calculus of the first order 13

P Q" R St

Pr(8+n) [Pr(8+m)1* [Pr(8+m71* [Pr(8+n)]*

Thus, any formula in F!» will correspond a sequence of numbers, namely
those corresponding to the successive symbols of the formula. For example,
to [(Vx) F*(x) D~ (V¥)G'(y)] will correspond the sequence

26 9 11 8 19 6 11 8 3 5 6 9 112 8 19 6 11* 8 4
We can make a unique number correspond to the formula by taking the
product of the successive prime numbers (in their natural order) with
powers equal to the numbers of the symbols (in the order in which they
occur).

Thus to the formula above will correspond the number

2@ 3% 5° 7 118 13! 178 19t 23° 293
315 37% 43° 47" 538 59 618 67V 718 73

We call this the Godel number of the formula, or, if M is an expression
consisting of the symbols I'y, Iy,, I'yyy I'p and we let @y,, @,
be the integers associated with these symbols, then the Godel number of

M is the integer
r:j;Pr(k)"k and we write gn(M)=r

If M is empty we write gn(M)=1

We will define Welf(x) to mean x is the Godel number of a well-formed
-formula.

We will now define five intermediate predicates which will correspond to
the formation rules of F'», (1), (2), (3), (4), and (5), respectively.
(1" Prop(x) holds if and only if

' min,[1 GI x=17,<max 17]

m/=\1 L@ =1 ~1Tm/l GI x)]

(x is the Godel number of a p\ropositional variable standing alone.)

(2") Func(x) holds if and only if

14 J. T. Ryan

5L(x) A, Ay Ay A 6
1 2 & & KA~
=1 my=1 my=1 my=1 m,=1 L =1
As Ag Aq Ag [11
[X2 Rk & A Av)]

m=1 m=1 m=1 m=11L i=7
where

A;=min, [1 G! x=yPr(9+n)<Pr(9+»)]

Ay=min, [1 GI x-=yPr(10+n)<Pr(10+7)]

Ag=min, [(2i+1) GI x-=-11y<11]

A,=min, [(2i+1) GI x=-13y<13]

As=min, [1 GI x=19y<19]

As=min, [1 GI x=23y<23]

As=min, [3 Gl x=11y<11]

Ag=min, [3 GI ¥-~13y<13]

Vi=(L(x) =2(n+1))

Vo= ([mPr(9+n)/1 GI xI~[m,Pr(10+#)/1 GI x])

Va=(2 Gl x=6)

Vi=([2n+2] GI x=8)

V5=(/Z\2 [2i GI x=7])

VF(/\ CQ1ms/T2i+1] GI x)~ (13m,/[2i+1] GI x]

Vi=(L(x) =4)
Va=([19ms/1 GI x]\/[23ms/1 GI x])
Vo=(2 GI x=6)
Vie=({11m/3 GI x]\/[13ms/3 Gl x])
Vu=0@ GI x=8)
This states that x is a Godel Number of any »-ary functional variable or
constant standing alone (with its argument).

(3’) C.V. Neg(x) holds if and only if
[[Welf () IN[x=2%*y1)

A note on the wif of a pure functional calculus of the first order 15

(If I' is wf then I'~is wf)
) C.V. Impl(x) holds if and only if
[CWelf (INLWelf (2) JN\[x=2%%y*
[Pr{L(y)+2173%2« [Pr[L(» +L(z)+3]11*1]
(5" C.V. Quant(x) holds if and only if

min, [l1y=7]
™

[Welf(») N\ [[x=253%5778y] A[11m/n]] }

We now make the definition:
Welf(x) holds if and only if
[[Prop(x) N [Func(x)IN/[C. V.Neg (x) IVIC. V. Impl(x) IV[C. V.Quant (x) 1]
We note that Welf(x) is recursive. But this simply states that the wff

of F's» form a recursive set.
References

1. Alonzo Church, Introduction to Mathematical Logic, Princeton University Press,
Princeton, New Jersey, 1956.

2. Martin Davis, Computability and Unsolvability, McGraw-Hill Bock Co.,
New York, 1958.

3. Kurt Godel, Uber formal Unentscherdbar Satze der Principia Ma“tematica und
verwandter Systeme 1, Monaishefte fir Mathematik und Physik. Vol. 38 (1931)
Pp. 178—198.

The Total Systems Corporation,* Honolulu, Hawaii

* Besides serving as President, The Total Systems Corporation, Mr. Ryan is also
a Senior Staff Consultant to the Control Data Corporation in logic design and
systems analysis.

