On the semi-developable spaces

CHINKU CHU

The notation and terminology used in this paper are to follow those of J. Dugundji [2] mainly and any mapping is to be continuous surjective. We shall assume that the terminology of neighborhood is used in the general sense, not necessarily open. We define semi-developable spaces due to Charles C. Alexander [1] as follows.

Let $\Delta = \{g_n | n \in N\}$ be a sequence of (not necessarily open) covers of a space X, where N is the set of positive integers. Δ is a semi-development for X if and only if for each $x \in X$, $\{\operatorname{St}(x, g_n) | n \in N\}$ is a neighborhood base at x. A space X is called semi-developable if and only if there exists a semi-development for X.

A mapping $f: X \rightarrow Y$ is pseudo-open if for each $y \in Y$ and any open neighborhood U of $f^{-1}(y)$, it follows that $y \in Int[f(U)]$.

For later use, we note that semi-developability is hereditary and every semi-developable space has a semi-development $\{g_n | n \in N\}$ having the property $g_{n+1} < g_n$ (g_{n+1}) is a refinement of g_n for each $n \in N$. Semi-developments having this property shall be called *refining semi-developments*. We may assume that every semi-developable space has a refining semi-development [1].

We shall use the following results due to Charles C. Alexander and M. Henry for some parts of our discussion:

- (A) A space X is semi-metrizable if and only if it is a semi-developable To-space [1].
- (B) The image of a semi-metric space under an open finite to one mapping is semi-metrizable [3].

Now we prove the following.

THEOREM 1. If a space X is the union of a locally finite family of open semi-developable subspaces, then X is also semi-developable.

Proof. Let $X=\cup\{A_i|i\in I\}$ be the union of a locally finite family of open semi-developable subspaces and $\Delta_i=\{g^i_n|n\in N\}$ be a refining semi-development for the space A_i for each $i\in I$. Consider the set $\Delta=\{g_n|n\in N\}$, where g_n is the union $\cup\{g^i_n|i\in I\}$. We shall show that Δ is a semi-development for X. Each $g_n\in \Delta$ is a cover of X since every g^i_n , $i\in I$, is a cover of A_i . Suppose that U_x is any neighborhood of an arbitrary point $x\in X$. Since each A_i , $i\in I$, is open in X and $\{A_i|i\in I\}$ is a locally finite family, there is a neighborhood v^i_x of x such that $v^i_x=\operatorname{St}(x,g^i_n)$ for some $n_i\in N$ and $v^i_x\subset U_x$ for $x\in A_i$, $i\in I$. Hence $\operatorname{St}(x,g_n)\subset U_x$ where $n=\operatorname{Max}\{n_i|x\in A_i\}$. Therefore $\Delta=\{g_n|n\in N\}$ is a semi-development for the space X.

COROLLARY If X is the union of a locally finite family of open semi-metric subspaces, then X is a semi-metric space.

Proof. It clear that X is a T_0 -space. But it is semi-developable by (A) and hence semi-metric.

THEOREM 2. The product space $X=\Pi\{X_{\alpha}|\alpha\in \mathcal{A}\}$ of topological spaces is semi-

Received by the editors Oct. 30, 1971

66 Chinku Chu

developable if and only if $\Re(A) \leq \Re_0$ and each space $X_{\infty} \alpha \in A$, is semi-developable.

Proof. Suppose that $\aleph(\mathscr{A}) > \aleph_0$. Then X is not first countable. But the semi-developable space X is first countable. Hence $\aleph(\mathscr{A}) \leq \aleph_0$. The semi-developability is hereditary [1]. Thus each X_a , $\alpha \in \mathscr{A}$, is semi-developable.

Now conversely we consider firstly the case (A) = 0, where we can set A = N. Let X be a semi-developable space with $A_i = \{g^i_n | n \in N\}$ as semi-development for each $i \in N$. Set $g_{im},...,j_n = \{\langle G_{im} \rangle \cap ... \cap \langle G_{jn} \rangle | G_{im} \in g^i_m,...,G_{jn} \in g^j_n\}$ for a finite set $\{i,...,j\} \subset N$ of distinct elements and $\{m,...,n\} \subset N$, where $\langle G_{im} \rangle = P_i^{-1}(G_{im})$ is a slab in X.

We will construct a semi-development for X as following. Let $\Delta = \{g_{im}, ..., j_n | i, ..., j, m, ..., n \in \mathbb{N}\}$ where $\{i, ..., j\}$ is a finite set of distinct elements of N. The set Δ is a countable set of covers of X. Consider a fixed $g_{im}, ..., j_n$. For any $x \in X$, there exists $\langle G_{pq} \rangle$ such that $x \in \langle G_{pq} \rangle$ and $G_{pq} \in g^{p_q}$ for each p = i, ..., j, q = m, ..., n. Thus $x \in \langle G_{im} \rangle \cap ... \cap \langle G_{jn} \rangle$ $\in g_{im}, ..., j_{in}$. Hence $\bigcup g_{im}, ..., j_{in} = \bigcup \{\langle G_{im} \rangle \cap ... \cap \langle G_{jn} \rangle | G_{im} \in g^{i}_{im}, ..., G_{in} \in g^{i}_{jn}\} = X$.

For any neighborhood U_x of $x \in X$, there exists a neighborhood V_x of x such that $V_x = \langle G_i \rangle \cap \cdots \cap \langle G_j \rangle \subset U_x$, where $G_i \subset X_i, \ldots, G_j \subset X_j$ are neighborhoods of x_i, \ldots, x_j , respectively with $P_i(x) = x_i, \ldots, P_j(x) = x_j$. Since each $X_i, k \in \mathbb{N}$, is semi-developable, there exist $\operatorname{St}(x_i, g^i_m) \subset G_i, \ldots, \operatorname{St}(x_j, g^j_m) \subset G_j$.

Hence $\langle \operatorname{St}(x_i, g^i_m) \rangle \cap ... \cap \langle \operatorname{St}(x_j, g^j_m) \rangle \subset V_x \subset U_x$. Clearly $\langle \operatorname{St}(x, g^i_m) \rangle \supset \operatorname{St}(x, g_{im}, ..., ..., ..., ...)$

Hence $\operatorname{St}(x,g_{im},...,j_n)\subset \langle \operatorname{St}(x_i,g^i_m)\rangle\cap\ldots\cap\langle \operatorname{St}(x,g^j_n)\rangle$ and therefore $\operatorname{St}(x,g_{im},...,j_n)\subset U_x$. We shall show that $\operatorname{St}(x,g_{im},...,j_n)$ is a neighborhood of x. For any point $a\subseteq \langle \operatorname{St}(x_i,g^i_m)\rangle\cap\ldots\cap\langle \operatorname{St}(x_j,g^j_n)\rangle$, there exist $G_i,...,G_j$ with $a_i,x_i\subseteq G_i\subseteq g^i_m,...,a_j,x_j\subseteq G_j\subseteq g^j_n$. Hence $a,x\subseteq \langle G_i\rangle\cap\ldots\cap\langle G_j\rangle\subset \operatorname{St}(x,g_{im},...,j_n)$. Hence $\langle \operatorname{St}(x_i,g^i_m)\rangle\cap\ldots\cap\langle \operatorname{St}(x_i,g^j_n)\rangle\cap\ldots\cap\langle \operatorname{St}(x_i,g^j_n)\rangle\cap\ldots\cap\langle \operatorname{St}(x_j,g^j_n)\rangle\cap\ldots\cap\langle \operatorname{St}(x_j,g^j_n)\rangle\cap\ldots\cap\langle \operatorname{St}(x_j,g^j_n)\rangle\cap\ldots\cap\langle \operatorname{St}(x_j,g^j_n)\rangle$ is a neighborhood of x. Hence Δ is a semi-development for X. For the second case $\langle A \rangle \langle A \rangle$, is clear the sufficiency

THEOREM 3. If X is semi-developable and $f: X \rightarrow Y$ is a pseudo open finite to one mapping, then Y is semi-developable.

Proof. Let $\Delta = \{g_n | n \in \mathbb{N}\}$ be a semi-development for X. Set $\Delta' = \{f(g_n) | n \in \mathbb{N}\}$, where $f(g_n) = \{f(G) | G \in g_n\}$. For any neighborhood U_y of a point $y \in Y$, $f^{-1}(U_y)$ is a neighborhood of $f^{-1}(y)$. Since f is finite to one mapping, we can write $f^{-1}(y) = \{x_1, x_2, ..., x_k\}$. There exists $n \in \mathbb{N}$ such that $\operatorname{St}(x_i, g_n) \subset f^{-1}(U_y)$, for all i = 1, 2, ..., k. If $a \in \operatorname{St}(y, f(g_n))$, there exists f(G) such that $a, y \in f(G)$ and $G \in g_n$. But $G \subset \operatorname{St}(f^{-1}(y), g_n)$, and hence $a \in f(G) \subset f[\operatorname{St}(f^{-1}(y), g_n)]$. Conversely, if $b \in f[\operatorname{St}(f^{-1}(y), g_n)]$ there is $G \in g_n$ such that $b, y \in f(G)$ and $G \in g_n$. Hence $b \in \operatorname{St}(y, f(g_n))$. Therefore we obtained $\operatorname{St}(y, f(g_n)) = f[\operatorname{St}(f^{-1}(y), g_n)]$. Since $\operatorname{St}(f^{-1}(y), g_n) \subset f^{-1}(U_y)$, $f[\operatorname{St}(f^{-1}(y), g_n)] = \operatorname{St}(y, f(g_n)) \subset U_y$. The fact that f is psedo-open and $\operatorname{St}(f^{-1}(y), g_n)$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y)$ implies that $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y, f(g_n))$ in $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y, f(g_n))$ in $\operatorname{St}(y, f(g_n))$ is a neighborhood of $f^{-1}(y, f(g_n))$ in $\operatorname{St}(y, f(g_n))$ is a neigh

COROLLARY. The image of a semi-metric space under a psudo-open finite to one mapping is semi-metrizable.

Proof. Let X be a semi-metric space and $f: X \rightarrow Y$ be a pseudo-open finite to one mapping. Since X is T_0 and semi-developable, Y is T_0 and semi-developable. Hence Y is a semi-metric space by (A).

REMARK. The above corollary is a generalization of the (B) which has been proved by M. Henry through some different methods used in the semi-stratifiable spaces.

References

- [1] Charles C. Alexander, Semi-developable spaces and quotient images of metric spaces, Pacific J. of Math., Vol.37, No. 2 (1971), 277-293.
- [2] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston(1967).
- [3] Michael Henry, Stratifiable spaces, Semi-stratifiable spaces, and their relation through mappings. Pacific J. of Math., Vol. 37, No. 3(1971), 697-700.

Choongnam University