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On the Fourier series of a harmonizable process
Hise Yu

1. Introduction

The harmonizable process was first defined by M. Loéve [11],[12], as a nonstationary
generalization of the stationary process. T. kawata [7], [8], studied on the Fourier series
of the stationary process. This paper mainly deals with analogues of some results of the
above study to the case of the harmonizable process.

Throughout this paper, without otherwise mentioned, a harmonizable process is denoted
by X(2), —co<t<{co; while a weakly stationmary process by 2(2), —oo<¢<{co. The follo-
wing notations and propertics are always assumed.

(1) In the case of the harmonizable process:

EX(#)=0, for all t&=(—o00,c0),
E{ X(#)|*< o0, for all te=(~—o0,0),
a1 X(:)zf  endyY(D) as,

where
EY(A)=0 and E|Y(R)|2< o for all A=(—c0,0)
such that the covariance of Y(A) and Y(1") represented by
EY(QDY(ANH=FQA, 1)
is of bounded variation on the two dimensional (4, 2”)-plane and has the property:
1.2 Re,=["_[7 ew-narFa,
where R(,)=EX®)X ().

We call (4, 2") the spectral function corresponding to the X(#)-process, and (1,1)
and (1,2) are respectively called spectral representation of harmonizable process X(¢) and
spectral representation of harmonizable covariance R(Z, #).

(i) In the case of the weakly statiopary process:

Ez($)=0, for all :&(—o0, 00},
Elz(6)|2<o0, for all t&(—o0,00),
.3 X® :j‘; eidy(R) as,

where (1) is a process with orthogonal increments such that

Ey(H)=0, Ejy(D)|*=F)<co, Eldy(A)|*=dF ()
and

r(O=Ea(t+u)z=|__ eadF®.
Here the gpectral function F(1) is real, nondecreasing and bounded '
For the convenience of the subsequent study we shall mention the following fact which

is already known:
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LemMMA 1-A.
(1.0 O @Fa, 0z
In fact, from (1.2) we have
[0 [0 aran=E1x@)=0.

We remark here that without changing the value of the integral (1.1), we can always
suppose that Y(A) is everywhere continuous to the right in quadratic mean, so that
Y(A4+0)=Y(2). The function F(A, 1) then defines a complex valued mass distribution
over the whole two dimensional Euclidean (4, *)-plane such that the mass carried by any
rectangle A<{A<h+4h, b’ <X’ <k’ +4h’ is equal to the second order difference 42F(A, 1"y
corresponding to this rectangle. It follows from the Hermitean symmetry of covariance
that the masses carried by two sets of points symmetrically situated with respect to the
diagonal 1=2" of (4,A")-plane are always complex conjugates. ‘

The Fourier coefficients of X(2) and 2(¢) over (—T/2,T/2) are respectively

1(t~ .
a. » C":Tﬂﬂz X(f)e""""‘dt, n=0, i].’ _’_’_‘2, """"
and
T,
=]y, SOt #=0, 1,42, e

where T is any positive number and wo:—%’f«.

For the later use we define
1.6 cw={,__ |, 1¢F&RDI.

Then G(2) is never decreasing, bounded and non negative function of A, (See H. Cramés-
[3] page 73.) It is obvious that the function

.n Bw=[, |, aran

is of bounded variation over — oc<{ge<{c0,
From the Hermitean symmetry of F(1,1%), it follows that

cw={__ i 1en=[ [ ian.
Bw=(__ |, a&F

Bw=[ | ___

2. The bebavior of Fourier coefficients as n-—oo,

T. Kawata [8] has shown the following theorem for the weakly stationary processs
THEOREM 2—A. () If for 0<La<l

@1’ I7. 1earay<es,
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then
2.2y 2 Elc,|2=0(N)
in|>N
as N — oc,
) If z(t) is periodic with period T, then under the condition (2.1) with 6<a
<2, (2.2) holds. And if =2, then
2 Eic,|*=0(N™2).
inl>N
(iii) If x(t) is periodic with period T, and

|7 121Gegt1anaFD<e,  B>0,
then
"%NEIC,,P:o(l/N(logﬂN)).

The analogue of the above theorem to the harmonizable process is as follows.
THEOREM 2—1. (i) If

(2.1 o1 weaFa, 1<,
for 0<a<{1 then
(2.2) SEIC,17=0(N")

as N — oo,

() If X(t) is periodic with period T, then under the condition (2.1) with 0<<a<(2,
(2.2) holds, and if a=2, then
(2.3) ;§>;E\C"V=O<N‘Z)-

(i) If X(2) is periodic with period T and

(7 [7 11Gog* 1291028, 1)1 <o, B0,
then
,§>§1C,.lz=0 (1/N(log®N)).

REMARK 2—1. The condition (2.1) can be written by r_; 1A e dG(A)<oo, where
G(R) is defined in (1.6). Similarly the condition in (i) can be expressed with
respect to G(R).

(Proof) (i)

Z EIC 2= E +2 .

AN

T/2 T/2
=z | j dtdp? e T
> N n>N /2 T/z

.j:o jio e F (R, A7) = g}N J_w j_m d*F (A, AI)TI 2" A=/ T gy

10T vcr—gem . o sinw(n—TA/2%) | sznz(n—TX /27r),,
T, &A= T [ Tn—TA2m) aa—TA T2y

If we put

F(A4, )

__sinz(n—TA/2%x)
a,()= (n—TA/2z)
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then we have
|5l <[ [7. Blaaenara, 1)
<frurfeerrtonf”_ +j:f,,:z=1,+12+13.
Il<j}g~jysﬂ 2 n—“ -—ﬁ, |eFa, |
< g wwlll jema
L={per [* B 1a.Da(@) 14F G 1))

We must prove here that
D ,§v |2, (Da,(2)]=0(1) vniformly for 4, X',

=O(N-Y).

o [ 11| =0V,

The proof of 1): The number of »’s which come into the interval (T}' -1, g +1)
or (Ge—1, T2 11) is 4, and the summation of |a,(Da,(¥)| with respect to this

four n's is less than 4, becawse |a,(A)a,(3)|<1 for all n Therefore we have only to
show that the summation of |a,(1)e,(4")| with respect to »'s which are not in the
intervals is dominated by a constant independent of A and A, Now we have

|a(Da 2| < T‘I_n' |
2w

2%

——;ﬁ

Putting

min([| 52—}, [|-o2—a|])=t.t, 2,

then for any temporarilly fixed (A, A7), the number of #»’s for which the integer
k, (A, &) assumes the same value is at most four.

Therefore
Z leamn|<z4r ]T——- -ﬁ,——|< Bl A
nt (221, ~22-11)

and net( Xy, TX 1),

which proves 1).
The proof of 2): We have

oz f7_1ara,01<(5) T [T ime1ara, a0
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— T ¢ a — —a
=[x ) Jpuy 1H1edG D=0,
which proves 2).
Therefore Z={ [~ OCDId#F( 1)1 =0¥-%).
T

Similarly we can prove that
z‘_,_é?lc,,lﬁ:o(N‘“).

(ii) From the Parseval relation (see N. Bary [1] page 155),

I [l g) o) s 5 o g
1. Lr
B+ (e i) )=
- deR (t+7, t+i>—R(t+" t—ﬁ.>—R(z L z—{—h\—LR 4, r——%)}
:—1_ let JA* j“me't(i-—”( h(l 1) eh(H:,)—{-e_'}'(l;‘ )——ef"h(lljr)\dZF(l, Z.’)

oo sm - ,
=" . 4-sin ’;ﬁ sin 22 @ F (2, 20,
20 1) 2

which is dominated by

7L [2 G en i arc o)

By the Schwarz’s inequality we have

/j JLJV Ismﬂvsm——$ ‘d F(4, X’)

S CoPE ST I sinszszcz,/m
=({

S e M aer 01 =([ st aGn)y

where we used the Hermitean symmetry of F(4,A").
Therefore

nh

" b Elc|25m2—_—<4j sin® 1dccx>.

Integrating with respect to h over (0, 7/(2N)), we have

v e hA (TS,
[T anf”_swtracwz g EiC [ snEyrdh

From [ |3"dG(0<eo,  0<a<z. it follows thar

Jric sin? hzl

dG(D)=olh h—0).
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(See T. kawata [8], Lemma 1,()). From

(2N . znh . T
f sin*~p—dh>- g5

(See N. Bary [1] page 156 (2.2)) and the above relation it follows that
T pedh)= ¥ EIC.1? X

o[ )= g e 4

that is '%NEIC, 2=g(N~*) which proves the first half of (ii).

From
|7, 1racn<eo,

it follows that

30 . l ‘oc 2 2
R R T Y
therefore we h.ave'§> bA‘EIC,l’xO(hZ), which proves the rest of (ii).

The proof of (iii) follows from that of [8] page 26. (See also [4] Lemma 1 in page
174 and [4] Lemma 7 in page 181).
3. The mean convergence of the Fourier series

THEOREM 3—1. For every lt|<-,13—T,

E|S,(@)—X@®I|*—0
as n—co, where

.=, :z_ CieiexiT,

REMARK 3—1. This theorem which is proved by T. Kawata [1] for the stationary
process, also holds for the harmonizable process.

Ir
(Proof) S.O—-XO=4[  (X®-XOIDLT—t)ar,
-7
where D (T) is a Dirichlet kernel, that is,
1)\2=xz
sip{ 745 )
D(T)= ; —2;), .
2sinp
1 (37 @7
We have EiS.(O~X®| = | drdc’-
_.%,1' ~17

E(X(2)~ X)) X(T)—X@D)Du(t—1)D,(v'—1)
. . 1 3T 27
= fw j:o d2F (A, A )'“T“;_‘._%T _%Tdtdr’-
o (HA— T - XY gR A —E) L KM= ¥3),

T
D e~D(~0=["_["_aFa, 1) -—%,—Ii(e""-e“')l),(r——z)dtv
)
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T
¥

" (e e D ('),
T

Since both of the inner Dirichlet integrals are bounded for ail 2,4’ and ¢, and ap-
proaches zero as n goes to infinity, our theorem is proved.

4. An approximate Fourier series

T. Kawata [8] constructed an approximate Fourier series of a stationary process using
the representation a::(t):ji0 etidy(R),

We shall here construct an approximate Fourier series of a harmoniozable process using
the representation X(t):_—J.i:o e*dY (2). Let us define

w(n+1)

{4.1) C.= CUAY(D. n=0, 1, £, e ,

where w,=2z/T.
Our approximate Fourier series is defined by

(4.2) RH= fj ¢, oo,

We shall prove some theorems.
THEOREM 4-1.

"jﬁmé,, eino!
converges in Ly-norm.
(Proof) We prove that
Since
ECCa=[""" """ @R (2 2,
we have i "

N7 N (nt+1) (m+1) N
|8, [=l, B e [T eraing &

aym inlim|=N
J‘wo(n+l) on(m-‘rl) lsz(X, )‘,) |0 (N, N — o0)
on account of the fact that F(4,4”) is of bounded variation.
THEOREM 4-2.
X()—-X@) in Lynorm as T — oo,
{(Proof ;
E|X()—X®|*=E|X®)"—EX@®)X(0)—EX(OXO+EX@®) P=L— 1~ I+ 1,
L=f |7 e ara, v,
) . " o n+1) (wln’+1)
[4: Z eiln—n ,wnrJ\. f

myn' =00 A=wgn

d2F(3, X,

A= agn’
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= F o TN g p (3, 1),

= —se =0 J Xtntion

L= 3 omee [ f: gt F (L, A7),

It is easy to see that [, [, 1., I, all ten.d to I, as T —» oo, Therefore we have proved
that
EIX®)~-X®2—0
as T—o0
THEOREM 4-3. Let g(x) be an even function which is non-negative and non-decreas-
ing for x>0 and

@ Z, Sy <o
If
.5 |- J e1ara, 1i<en,
then (4.2) absolutely converges almost surely.
(Proof EE ICI=E £ | [ axcw)
=E 5o (eCwoy | [ ay@|

<(Boihey) (Zatwm [0 [ i@, 101)”
<(Z g(:’on) 1/2 a 'r.,(ﬂu) j-u,:nﬂ)ga)g(l,) lsz(A, 1/) l)
<(Z‘ Z (won)) (r g(l)dG(l)) L oo, g.e.d.

REMARK 4-1. The Fourier coefficients of our approzimate expansion are not uncor-
welated, while the approximate Fourier series of the stationary process in [8] has
the uncorrelated Fourier coefficients.

REMARK 4-2. A Papoulis [13] has shown another approximate Fourier expansion
of the stationary process and proved some properties of it, which can be summarized
as follows:

Putting w,=2x/T,

.and defining

& —I x(t)Me*Wdt
and

EO=3 &,
we have

(1) z(t) is stationary and m.s. periadic.
(2) Ec,=0 when ncm,
(® lim E(jz®)—~2B) 1D =0.
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An analogue for the nonstationary processes (including the harmonizable process) is

as follows:
Let us define

C=” Xy SR iy,

and
X®O=F C.em,
Through this definition
2 EC.C,=0 when nxxm
holds, but
(3)" im E(X@®)—X@®|*=

never holds. i
In other words, in our case, X(t) is not an approximate expansion of X(t).

5. The absolute convergence of the Fourier series

T. Kawata proved a theorem on a sufficient condition of the absolute convergence of
th> Fourier series of z(z)-process which is a probabilistic analogue of the Bernstein’s
thesrem. We shall prove here a theorem on the generalized absolute convergence of the
Fourier series of X(#)-process, which is an analogue of the theorem in [15] Page 137.

THEOREM 5-1. If X(@) is periodic with period T, and

[C [ iaiei@F@ i<, 0<axz,

then i lC.|’
converges with probability one when p >——— « +1 ,
(Proof)
- o , o it
Leicr=% % EIGP<L(Z Ec)( E 1)
v—l a=2v-l41 ¥=1 \n= n=2e=141
SEO@) =T 05 (by Thm. 2-1 (i)
=5 0@ ) =0(D),
v=1
when ——2——-<p.
a+l1

Similarly we have

Z.' E|C,|*=0(D,

2
when —-;‘L_T<P-

Therefore by the Fubini theorem _§_ |C.|? converges with probability one. g.e.d.
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REMARK 5-1. When p=1, the above theorem turns out to deal with the absolute

convergence, i.e.

COROLLARY 5-1 If X(&) is a process with peried T and
6.1 7 1ate1ara, 1y1<o0 for some a>1,

then Z} IC | converges with probability one.

Indeed, from the Theorem 5-1, we have now -7&—_2'71—->1, ie a>l.

More generally we have the following
REMARK 5-2. The condition(5.1) can be replaced by the following condition:

(5.2) ﬁmf; 12| (log*|41)#|d°F (2, A} | <oo for some F>2. (See [8] page 27).

REMARK 5-3. The following theorem is an analogue of the Szas?'s theorem. (See
1] page 156, and [8] page 28.)
If we put

=4 an® tsin VA F QG 20,
oty=4f__ f" - Tan sgrdsing
¢<h>=—};jf¢<h)dh #>0)
ol (~2) sk -2y snkan)
=L La-n S ha-n  Earr
z z T

VasF @, 2,

;then we have the following
THEOREM 5-2. If X(2) is periodic, with period T, and

2 (8(3)) wn<on,
then F C.I<o0  with probability one.

REMARK 5-4. The proof of the above theorem is just the same as in the case of
the Szasz’s theorem as T. Kawata [3] remarks. And there is no difference between the
«case of the stationary process and the case of the harmonizable process. For the sake

of completeness we shall prove it now. The following proof is adapted from N
Bary [1].

(Proof) From the Parseval relation we have

=B x(o+4) (o) de= & Bicurint SR
7

k-0

j T otydh=4 5 E|Cb|=r"smz~’-‘—%"—dh
['] Az=—0c0 ]

i 1 T
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If 7 is the integer such that
i<k,

then

T (‘7 T iz Ti 1
<k L sm2tdt2_—_7m(l—i—1) L sin’t dt_b———ﬂn(l—l—l) jsm tdt=—— 20+D 2

If 2>>n this last term is not less than ’_f;_._l_

T
Therefore
1 z/R
o L p(hdhZ 3 EICiIY
ie ¢(l)2.23 EICi".

As we can find a finite and positive constant B such that Bé( >>¢<T> we have

B¢( >> T E|C.le.

ik|zn

o ke o + E|IC
Now mZ_OOElel:EICol“*‘_;:”éEI E\If\kl +E= 2; Ikb]
o0 o oo o C
=BiGI+E R BB
=EIGI+E 5Pt

<E|C|—r2\/2 ZE'C,,IZ
2Eico|+"§l«/A-7-¢(%)-
where A is a finite and positive constant.
6. Covariances of Fourier coefficients

The covariance EC,C,, of Fourier coefficients can be written as follows.

T 71
6.1 EC,,C‘,”—_—%F jz Te-'z—;("'~""’>R(t, t)dtde’,
Oor
mn-— Sln_Y:L
(e SR L Ll Ty SRS U T S
@2 ECC=CDmefl [T —ppd T aam AT A
2 2 T TV

Properties of coefficients Ec,Z, was investigated by T. Kawata [7] and W. L. Root &
T.S.Pitcher [14]. The former approached it from the conditions on the spectral distribu-
tion function, while the latter from those on the covariance p(u) itself.

We shall give here one theorem, starting from the relation (6. 1), which is an analogue
of one of theorems in [147.
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Trporems-1 If | |R(t, t+u)| du<K uniformly for t, for some constant K, if
7' —v

there ezists ¢v(z;)EL,(——-%~, -%.) such that | f )R(Tv, To-+u)de | <o),

and if a

lim R(To, T da= ists,
TJ_T(%”) (To,To+uw) o(v)  exists
then
7
TEC',,C‘,,,—»I e mp(v)do.
-z

If moreover ¢(v) happens to be independent of v and non-zero, then whenever nitm,
we have

lim EC.C./VEIC,[’EIC,T* =0.
(Proof)

T r
T 7 \

TEC,,C,,:—%,«I f e~ (1, ) rdy
g

By the transformation #—f=u, we have

T
_ , T .
TEC,,C,,=—711-K%€“~(2; ~~~=>dzj RGN

By the transformation #/7=v, we have
1 T
T F T
TEC,Co= j gy [* = R(To, Todu)dn.
~3 ™
As we may think of the case only when |2]<{1/2, we have

T. Ty .
F e”u‘%‘R(Tv, To+-u)du

~_§_-—7‘w
7l v)
=j G R(Tv, To-+u)du
~7(§+s)
3-)

+f
~T(g+)
=J1+Jza
for any large positive mumber A, there exists a number T 80 large that

T(—opa, T(hrooa af ]

Pinne
¢ T —1DR(Tv, To+wa.

A

] T3+

i ﬂéﬂ)(ﬁ"%——l)ze(n, To-+)dul

4
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T(L1s

gzL | R(T», Tv+u) | du

gzjj | R(T'w, To+u) | du<2e,

U:i(e %;ml ~1>R(T’v, To+u)du

gsj‘i IR(To, To+) | duseK,

2mirat

where we used the fact that when 7 is large enough, for (u|<<A, |le T —1]<le
for any £>0.

Therefore |J,]<<eC for some constant C, ie. :lrim J,=0 for each }v|<{1/2

Hence T_1v 2mimmu

“E‘;JZ ¢ T R(Tv, Totw)du

T T
7 Tr

T
‘E-—Tv
=1;ﬂ_g_ﬁ}2(7‘v, To-+-a)da.
"3
e“z*"(""'""dvf * 7 R(Tv, Tot+u)ds

1
lim TEC,C=lim | ?
= - “r(ge)

-1
K
1 {3 v

z )
=f e~ 2iln—mivgly lim R(Tv, Tvtu)du
-} o)
3
=j e-"Zzi(u—nc)vsD ('U)dv.
-1
When ¢(v) happens to be a positive constant
1

= 'z
lim TEC,sza[ emamimmdngy

T—so0

z

0 i nicm,

{a if n=m, qed
REMARK 6-1 As we did not use in the above proof the representation (6.2), our

theorem holds for more general non-stationary processes including the harmonizable
process.
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