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1. Introduction. In this paper we are concerned with a finite difference approximation
to the solution of the boundary value problem
Lu=—(au..+2bu, ,+cu,,)=f in R

_ou_

50 +au=g ‘ on C, .

u=h on C,
The region R is a bounded connected open set in the (x,y) plane whose boundary C

consists of two parts C, and C,. The symbol - 3anﬁ denotes differentiation with respect to

outward directed normal on C,. The function f,g and A ar;a defined to be sufficiently
smooth functions on R, C, and C, respectively. The numbers @, » and ¢ are constants
such that b*—ac<(0, and a>> 0, namely the operator L is uniformly elliptic. The boundaries
C, and C, are unions of finite number of arc elements. The function « is a piecewise
differentiable function on C,. We restrict & to be zero on C,** and positive on C,®, C,?,
C,®@ being po-tions of C, for which C,=C,**JC,®, C, "V NC,®=¢. We also assume that
C,#¢, and that if C,=¢, then there is an arc element of non-zero measure in C,?,
We shall present some well known results from matrix theory which is used in the
following proofs.
A matrix A is said to be non-negative if each element of A is non-negative and the
notation A=0 will be used.
A matrix B with elements &;; is said to be monotone if =0 for any vector x such
that Bx=0.
A characterization of moenotone matrices is given by the following theorem, cf. [1], [2].
THEOREM. The matriz B is monotone i f and only if B is nonsingular and B™'=0.
DEFINITION. An nXn matrix B with elements b,; is said to be of positive type if the
followig conditions are satisfied:
a) b;=0 i%£j
b) ;bﬂgo for all j, and further there exists a non-empty subset J(B) of the

integers 1,2, ---, 7 such that for all j&J(B), X5, >0
k

c) for i€J(B) there exists a j&J(B) and a sequence of ncn-zero elements of B
which is of the form

bik,, b/,,f 9ttty b..,
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THEOREM. If B is of positive type then B is monotone. cf. [4], [1].

2. Finite-difference analogue. We shall first transform Lz into a form which lends
itself to the formulation of a finite difference problem of non-negative type (at points
of R). We define the new coordiriates (£,7) resulting from the rotation

€=z cosf—y sin b,
=z sin 04y cos b
Setting u(zx, y)=v(§,7) and choosing # in such a way that (c-a) tan 20=2b (if a#c),
cos 20=0 Gf a=c), we see that the operator Lz is expressed as follows
Lu=—(Ave+Bo,y),
where A>0, B>0.

We place a square mesh of width %2 on the region R with respect to (§,7) axis, and
call the mesh crossings “mesh points”. The set R, will consisis of those mesh points of
R whose four nearest neighbors are in R. The intersection of the mesh with C; will
make up the set C;;, i=1,2. The set C*,, will denote those mesh points of R which are
at a distance less than or equal to & (along the (§, %) axis from C,,, i=1,2).

We define the following operators at a point (§,%) of R,.

Lio(&, p)=—h* {Av(E-+h, )+ Av(e—h, 1)
+Bv(&, p-+h)+Buv(E, p—h)—2(A+B)e(§, n}.
It is well 'known that for ¥=C®(R)
' { Lu(P)—Lu(PY| <Mh, P=R, @10
where M, is a constant depending on the third derivative of u. ¢f. [3]. On C*, we use
the following operator.

L6 =~y vE—edhy i+ oo +edy )

B B A B
gy T G reh [ ]ee )

where
&=11, &,=41, 0<A, .U§1-
For example, if (& ) is the point (§,7) in Figure 1, then the inequality
| Lu(P)—Lu(P)| =Mk, P=C*,,|-C*,, (2.2)
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where M, depends on the third derivative of u, is easnly vernfxed For the normal
operator we adopt Greenspan’s method. [5]

Case A. Suppose that at (z, y)EC,,,, numbered 0 (see Flé’ure 2,a), the axis of the
aormal is directed inward and first meets the lattice in a point of R,+C*,, which has been
numbered 1. We define the operator J, to be

Up— U,

5,,u0 =

Case B. Suppose that at (z,y)&C,,, numbered 0 (see Figure 2,b) the axis of the
normal is directed inward and first meets with the lattice in a point numbered 1 that is
not a point of R,+C*;. Then this point lies in the interior of a closed segment of the
lattice which contains exactly two points, numbered 2 and 3, of R,+C*,+C, and of

which, we assume, at least one is a point of R,+C*,  The normal operator 4, in this case
is defined by

Satg=—2 — 4. uy— oA u.
* d  d(d;+dy) d(d,+ds)
Case C. Suppose that at (x, y)=C),, and numbered 0 (see Figure 2,c), the normal
is parallel to a line of the lattice. Suppose then that the associated axis is directed inward
and meets with a first lattice point that is a point of C*, and is numbered 1.

Taen set
3,u, :————u";u’
\)/ \(/ ) / Y
d \
A c / d h A h
c
da ds
1 2 1 3 : h o,
(@) ) ©
Figure 2
In any case of above the inequality
WP | a(PIu(P)—[8,u(P)+a(PIu(PY]| M, PEC,, (2.3)

where M, depends on the second derivatives of u, is easily verified.
We now pose the following finite-difference analogue of (1.1)
Liu(P)=f(P), PER,+C*,;+C*y,
u(P)+a(Pu(P)=g(P), P=C,,
u(P)=h(P), P=C,, (2.4)
Since a(P)=0, the matrix of the system (2.4) is of positive type. Thus the system
(2.4) has the unique solution and we may introduce Green’s function corresponding to
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2.49).
Let G,(P, Q) be defined as follows:
L, ,Gi(P, @)=h"*3(P, Q), PERA-C*;, +C*,
0.Gi(P, @+a(P)G(P, @)=0(P, &), PcCy,
G(P,QD=0(P,e), 'PeC,
for QERA—}‘C*H.'{"C*”’I"C!A'{'CH-
Since the matrix of the system (2.4) is of positive type, it follows that G,(P, @)=0.
LEMMA 1. Let V(P) be an arbitrary mesh function defined on R,+C*,,+C¥,+Cpt-
Cs. Then
|4¢4 );& E”%CP, DILV @]

+ QQJMG:.(P, DLV @ +a@VE@)] (2.5)
+ Z Gi(P,VD.
QeECa

Proof. Let W(P) denote the right hand side of (2.5). Then

LW(P)=L,V(P), PR A-C*,,+C*,,

3, W(P)+a(PYW(P)=6,V(P)+a(PIV(P), P=C,,

, W(P)=V(P) : - PeCy,
From the uniqueness of solution of (2.4), we have

W(P)=V(P), PER,+C¥%,+C*,+C1i4+C.
Letting V(P)=1 in (2.5), we have

LGHERDO=1
Q=i

Now suppose R is such that there exists a function $§=C(R) satisfying

L¢=1m R
- +apz 1mC, @6
LEMMA 2. Suppose that the function ¢ of (2.6) exists. Then for small enough h
Y GAA+R T G(PQ =4 [max|¢(@)]] @.n
QeCu QER+HCu+Cn Q=R

Proof. For small enough A,
L =1, PeRr+CH.1CH,
and
8.9(P)+a(P)P(P) = %_, PeCy,.
Taking V(P)=¢(P) in (2.5), we have
$Pzh_ T IGED+ T LGEDT ZCED ¢
Sinnce Qé}ct‘G.(P, @ = 1, we have the inequality (2.7).
We are now in a position to prove the following theorem.

THEorREM: Let u=CO(R) be the solution of (1.1). Suppose that the function ¢ of
(2.6) e.z;ists. Then
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e(P)=u(P)—U(P), P=R+C*,,4+C*,,+C1+Cu
where U(P) is the solution of (2.4), satisfies the inequality
m%xle(P)l < kh, 2.8

where k is a constamt which depends on u and ¢ but not on h
Proof. Let V(P)=¢(P) in (2.5). Then
s(BO=h_ % G O[Le(@)]

ERAC*lu+Cha

+, EZCHG,.(P, Q) [0,£(@)+a(@e@)].
Since G,(P,@)=0, we have
le(PDI é[hz Y G(PQ)] - max [Le(@! 2.9

SR+ C* 1 +C% QER+CHu+C

+[ T, Gi(P, @1 max|3,6(@)+a(@e(@

From (2.1), (2.2) and (2.3) we have
| Lie(P)| = Mh, P=R,A-C*,+C*y, " (2,10
[8.e(PO+a(P)e(P)| = M;h, PeC,,
where M=max {M,, M,}. Thus the theorem follows by inserting (2.7) and (2.10)
into (2.9).
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