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A Note on a Finite Difference Analogue

of Mixed Boun,dary Value Problem

lONG Soo KIM. YOUNG So Ko. HEON Koo LEE AND IL HAE LEE

1. Introduction. In this paper we are concerned with a finite difference approximation

to the solution of the boundary value problem

Lu=-(au%Z+2bu~y+cuyy)=f in R
QU

an+au=g on Cl (1. 1)

u=h, on C2

The region R is a bounded connected open set in the (x, y) plane whose boundary C

consists of two parts Cl and C2• The symbol ;n-- denotes differentiation with respect to

outward directed normal on Cl' The function f, g and h are defined to be sufficiently

smooth functions on R, Cl and C2 respectively. The numbers a, band c are constants
such that b2 -ac<0, and a> 0, namely the operator L is l.miformly eIliptic. The boundaries

Cl and C2 are unions of finite number of arc elements. The function a is a piecewise
differentiable function on Cl' We restrict a to be zero on Cl (J) and positive on Cl (2), Cl (J),

Cl <2l being po:-tions of Cl for which Cl=CI W UCl <2l, Cl (J) nCl <2l =Ijl. We also assume that

Cl =l=1jl, and that if C2=1jl, then there is an arc element of non-zero measure in Cl (2).

We shall present some well known results from matrix theory which is used in the

following proofs.
A matrix A is said to be non-negative if each element of A is non-negative and the

notation A~O will be used.

A matrix B with elements bij is said to be monotone if x>O for any vector x such

that Bx~O.
A characterization of monotone matrices is given by the following theorem, cf. DJ, [2J.
THEOREM. The matrix B is monotone if and only if B is nonsingular and B-l;:;:O.
DEFINITION. An nXn matrix B with elements b,j is said to be of positive type if the

followig conditions are satisfied:

a) bj;:O;;;O i*j
b) I;bj1;;:::0 for all j, and further there exists a non-empty subset J(B) of the

k

integers 1,2, "', n such that for all jEJ(B), I;bJk>O
k

c) for iftJ(B) there exists a jEJ(B) and a sequence of non-zero elements of B:
which is of the form
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THEOREM. If B is of positive type then B is 'I'fWIIOtOne. cf. [4J, [lJ.
2. Finite-differenee analogue. We shall first transform Lu into a form which lends

itself to the formulation of a finite difference problem of non-negative type (at points
.0£ R). We define the" ne~ coordinates' (~, TJ) resulting from the rotation

e=x cos O-y siD 0,
r;=x sin O+y cos O.

Setting u(-x,y)= v(e, TJ) and choosing 0 in such a way that Cc-a) tan 20=2b (if ai=c),
-cos 20=0 (if a=c), we see that the operator Lu is expressed as follows

Lu=-(Avee+Bv,,),
where A>O, B>O.

We place a square mesh of width h on the region R with respect to (~, TJ) axis, and
<:all the mesh crossings "mesh points". The set RA will consists of those mesh points of
R whose four nearest neighbors are in R. The intersection of the mesh with C i will
make up the set CiA' i=I,2. The set C*iA will denote those mesh points of R which art"
.at a distance less than or equal to h (along the (~, TJ) axis from C ih , i=I,2).

We define the following operators at a point (e, TJ) of RA.

Lhv(fi, TJ)= -h-2 {Av(f;+h, Tj)+ Av(e-h, Tj)
+Bv(fi, Tj+h) +Bv(fi, r;-h)-2(A+B)v(f;, r;)}.

It is well "known that for uEC<3l(R)

ILu(P)-LAu(P)"<M1h, PERh (2.1)

where M 1 is a constant depending on the third derivative of u. cf. [3J. On C*ih we use

the following operator.

LAv(,;, Tj)= -h-2
{ A(I~A) v(fi-e1Ah, Tj)+ 1~A. v(f;+e1h, r;)

B B [A BJ }+- p(l+p) v(!;,r;-82/lh)+ l+p v(e,7)+e2h)- -Y-+p v(';, Tj)

where
8 1=+1, E2=+I, O<A, p<l.

For example, if (fi,7)) is the point (fi,7)) in Figure 1, then the inequality

lLu(P)-Lku(P)I':;;'M2h, PEC*Ik+C*2k' (2.2)

C~+h,1j

Ce,1j-h '

Figure 1
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where M 2 depends on the third derivative of u, is easily verified. For the normal
operator we adopt Greenspan's method. [5J

Case A. Suppose that at (x,y)ECIh: numbered 0 (see Fitur~ 2, a), the axis of the
normal is directed inward and first meets the lattice in a point of Rh+C*ih which has been
numbered 1. We define the operator 0. to be

" _ UO-Ul
u.uo- -----;L-

Case B. Suppose that at (x,y)ECw numbered 0 (see Figure 2, b) the axis of the
normal is directed inward and first meets with the lattice in a point numbered 1 that is

not a point of Rh+C*ih' Then this point lies in the interior of a closed segment of the
lattice which contains exactly two points, numbered 2 and 3, of Rh+C*;h+Cih and of
which, we assume, at least one is a point of Rh+C*ih: The normal operator 0. in this case
is defined by

" Uo d 2 d 3
U.UO = -ti - d(d2+d;5· u3-d(d2+d3Y U2'

Case C. Suppose that at (x,y)EC1H and numbered 0 (see Figure 2, c), the normal
is parallel to a line of the lattice. Suppose then that the associated axis is directed inward

and meets with a first lattice point that is a point of C*'h and is numbered 1: Tilen set

(2.3)

In any case of above the inequality

I QUae:) +aCP)u(P)-[o.u(P)+a(P)u(P)J I~M3h, PECIh

where M 3 depends on the second derivatives of u, is easily verified.

We now pose the following finite-difference analogue of (1. 1)

Lhu(P)=f(P), PERh+C*Ih+C*2h

uCP)+a(P)u(P)=g(P), PECJh

u(P)=h(P), PEC2h. (2.4)

Since a(P}?::O, the matrix of the system (2.4) is of positive type. Thus the system

(2.4) has the unique solution and we may introduce Green's function corresponding t()
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(2.4).
Let G,(P, Q) be defined as follows:

Lk.pG,(P, Q)=h-2(J(P, Q), PeR..+C*u+C*u
IJ.G,(P, Q)+a(P)G,(P, Q)=8(P' Q), PeCu

G,(P, Q)=(J(P, Q), ' PeC2,

for QER,+C*u+C*2'+Cu+Cu.
Since the matrix of the system (2.4) is of positive type, it follows ~t G,(P, Q)~O.

LEMMA 1. Let V(l") be an arbitrary mesh function defined on R'+C*1I'+C*2'+Cu+
CM. Then

V(P)= .E G,.(P, Q)[L,V(Q)]
QeR"+C..+c",,

+ .E G,(P, Q)[iJ,V(Q)+a(Q)V(Q)J (2.5)
.Q.e...£Jk

+ 1:; G,.(P'Q)V(Q).
Qec""

Proof. Let W(P) denote the right hand side of (2. 5). Then

L,W(P)=L,V(P), PE~+C*I,+C*2'

8.W(P)+a(P) W(P) =8.V(P)+a(P)V(P), PECI'
W(P)=VCP) PEC2,.

From the uniqueness of solution of (2. 4,), we have
W(P)= V(P), PeR,.+C*1I;+C*n +CIk+C2,.

Letting V(P)=1 in (2.5), we have
.E G,(P, Q):::;; 1.

Qee..
Now suppose R is such that there exists a function t/JeC<3>(R) satisfying

Lt/J~1inR

~+at/J> 1 on Ch (2.6)

LEMMA 2. Suppose that the function t/J of (2. 6) exists. Then for small enough h
1:: G,CP,Q)+h2 .E G,(P'Q)::::;;: 4 [~It/J(Q)IJ (2.7)

geC.. OER+C..+c", aeM

Proof. For small enough h,

L,t/J(P) ~ ~, PE~+C*I,,+C*2"

and

lJ.t/JCP)+a(P)t/JCP) ~ i' PECu •

Taking V(P)=t/J(P) in (2.5), we have

t/JCP)~h2 1:: 21 G,(P, Q)+ .E 1
2

G,,(P, Q)+ 1:: G,.Cp' Q) t/J(Q)
QeR.t+C"..+C".. aec.. Qec""

Sinnce 1:: G,(P, Q):::;; 1, we have the inequality (2.7).
aee..

We are .now in a position to prove the following theorem.
THEOREM: Let UEC(3)(R) be the solution of Cl. 1). Suppose that the function t/J of

(2.6) exists. Then
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e(P)=u(P)-U(P), PERh+C*lh+C*2h+Ca+C2h,
where V(l") is the solution of (2.4), satisfies the inequality

max Ie(P) I ~kh,
p

where k is a constant which depends on u and rp but not on h.

Proof. Let V(P)=e(P) in (2.5). Then

e(P)=h2 E Gh(P, Q)[Lhe(Q)]
QeR.+C· t,+C·t4

+ E Gh(P, Q) [o.e(Q)+a(Q)e(Q)].
QeCI.

Since Gh(P, Q)~O, we have
Ie(P) I <[h2 E Gh(P, Q)] • max ILhe(Q) !

QeR.+c·111 +c·!, QeR'+~l'+~I'"

+[ E Gh(P, Q)] ·maxl o.e(Q)+a(Q)e(Q) I
QeC1II QeC1,

(2.8)

(2.9)

23

From (2. 1), (2. 2) and (2. 3) we have

ILhe(P) I ~ Mh, PERh+C*a+C*2h (2.10)
Io.e(P)+a(P)eCP) I ~ Mah, PECw

where M==max {Mu M 2}. Thus the theorem follows by inserting (2.7) and (2.10)
into (2.9).
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