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ON DIMENSION. OF NON-METRIZABLE SPACES

CHINHONG PARK

1. Introduction, This paper is a close connection of “some remarks ogf dimension of topological
spaces”. The purpose of this note is to extend some results of the theory of metric spaces to somewhat
more general spaces. Except for some facts we shall give results in the case of non-metrizable spaces.

Theorem 1 and 2 describe the dimension theory in non-metrizable spaces. We shall prove these by
equivalence. Proposition 2 and 3 are a theory of normal families to establish another dimension theory
on the new concept of dimension. This is to give a short sketch of normal family to re-establish the
dimension theory. Here we shall define a closed-normal family. By this definition, each family of all
hereditarily paracompact spaces and paracompact spaces with Ind = n, dim = n respectively is a
closednormal family.

2. closed-normal families and dimension of non-metizable spaces.

Before we consider the issues in non-metrizable spaces, To begine with, let us show that the following
proposition is held.

PROPOSITION 1. Iz a metric space R let C be a closed set of a space R. For every continuous

mapping f; of C into S” if R-C has covering dimension =< n and C has covering dimension <
n-1, there exist continuous extensions of 5; and f ; over R which are homotopic each other. Where

fj is arbitrary continuous mapping of C into i

Next, we are to lgive the brief theory of normal families to establish another dimension theory .on
the new concept of dimension. The theory of normal families was first established by W.Hurewicz to
deduce systematically fundan;ent.a}l theorems of dimension theory for separable metric spaces and was
extended by K.Morita to non-separable metric spaces. This is to re-establish a short result of dimension
theory by use of normal families. '

PROPOSITION 2. Let us define that a normal family C contains a metric space R if and if
R has strong inductive dimension =< n. Then all the metric spaces with Ind = n make a normal
Family.

Proof. Let C be a family of all the metric spaces with Ind =< n. To show C is a normal family, Let

ScRcC
Then by definition of hypothesis
Ind R = n.
Hence by virtue of Theorem k. 7 of (1)
IndS =n
This means S &C.
Let (Fy|7&l} be a locally finite closed covering of R such that
Ind F, &C for every y&I’
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then Ind F, €C means Ind F; =< n.

Hence R &C.
Similarly if {F ;]i=1, 2, -;----} is a closed covering of a metric space R such that
) F: C, i=J,, 2, seveee ,
then R &C.

We shall give another definition in order to construct the concept of a normal family in'more general
spaces as well as metric spaces. :
DEFINITION. A family C-n of topological spaces is called a closed-normal family if it satisfies.
i) if for every closed ¥bset S of a topological space R, SCR and R&C-n, then S&C-n.
i) if {Fy|yerl) is a locally countable closed covering of R such that
F,&Cn for every rerl,
then ReC-n,
By virtue of the definition above, a family § of metric spaces is a closed-normal family if and
only if it satisfies _
(1) if for every closed subset S of a metric space R, SCR and RE§, then SE§.
@) if {Fi]i=1,2, eseees } is a closed covering of R such that
Fief, i=1,2, veere
then REF. ,
(3) if {F;]rel'} is a locally finite closed covering of R such that
F,e§ for every r<rl,
then REF.
Now we are ready to apply the concept of closed-normal fam'ﬂ)f to dimension theory in hereditarily
paracompact and normal spaces. '
PROPOSITION 3. All hereditarily paracomact spaces and paracompact spaces with Ind =< n,
dim = n respectively make a closed-normal family. .
Proof. Let § be a family of all hereditarily paracompact spaces with Ind R = n. Generally in a
topological space R, if F is a closed subset of R, then
Ind F = Ind R
By usé of this fact, for every closed subset S of a hereditarily paracompact space R,
If

ScReg,
since

Ind R = n,
therefore

Ind S = n.
This means SE . V
Let {F;]7ETl}) be a locally countable closed covering of R such that
: F,eg for every y=I.
In view of proposition 4 of (2} and Ind F,. = n, R&§. Hence § is a closed-normal family.
Next, let § be a fanﬁly of all paracompact spaces with dim R < n.
Suppose
SCReE€.
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for every closed subset S of a paracompact space R. By virtue of proposition VIL2 of (1) and dim S
= n, it is obvious that
. S<¢€.
If {G,|rerl) is a locally countable closed covering of a paracompact space R such that
G,e=€ for every r<r,
sthen dim R = n because dim G, = n and proposition 4 of (2] This implies
REE. '

Also in Proposition 2, all the metric spaces with Ind = n make a closed-normal family. The
‘foll.owing Lemma is satisfied in a general topological sapce, we will use this Lemma in the process of
proof.

LEMMA 1. Let §={V.|a<t} be an open collection of a topological space R such that

ord B(§) ==
Let ‘ .

. Fo=%,

Fa=Va—U {Vz]<a} for every a<z.

Then F= {Fe|a<r} is a closed collection with

ord F < n¥1.

Now we are ready to consider dimension theory in non-metrizable spaces. 1t is difficult to establish a
«Jimension theory for normal space or even for paracompact Ti-spaces. The following statements are
brief results obtained in relations betweenr'dimension theory of metric spaces and of non-metrizable
spaces. Throughout the following facts we consider only Ti-spaces which satisfy Hausdorff's separation
axiom. _

TH§OREM 1. Let R be a normal space. The following properties are equivalent.

() dmR <n

(2) For every locally‘ finite open collection {U,|y<TI) in R and closed collection {F,|y<T) in R
wsuch that F,C U, for every ¥ there exists an apen collection {V,|y&l"} in R such that

F,cv,cv,CU,
ord B(V) |yl = n.
(3) For every open covering {Uili=1,2, seee ,k} there exists a closed covering § = {Fili=1,2, -,
&} of R such that )
FicU;, i=1,2, seok
ord § = n+1
() For every open covering {Uili=1, 2, seeee k) there exists an open covering &= {Vili=1,2, »-
ek} such that
ViCUi, i=1, 2, eweoes, k
ord & = n+l.

Proof. (1) implies (2); Let U, be the binary covering {U,, R-F;}. Then, since {U,]y&Tr} is locally
finite, A\ {U,|7y<l) is a locally finite open covering, By virtue of the first part of the poof in
proposition . 5. B of (1), we can easily see the statement holds.

(2) implies (3); For every open covering {Ui|i=1, 2, evec-- ,k} since R is normal, there exists a
closéd covering {G:i[i=1, 2, +--+--,k} such that
GiCUi, i“=1’ 2' eco 000 ,k.
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By use of hypothesis there exists an open covering {Vili=1,2, «-«,k} such that
GicVicVicU;
ord (B(Vi)]i=1,2,+,k} =n
Let
i:
Fi=V;—UV;
=1
By use of Lemma 1 § = (Fili=1,2, s ,k} 1s the desired set.

(3) implies (4) and (4) implies (1): we can easily see that statements hold.

Next we are ready to obtain a similar result in paracompact spaces as a dimension theory of metric -
spaces. By argument of equivalence we will prove the folloWing statements, In metric spaces this was
proved. ) -

THEOREM 2. In a paracompact space R the following properties are equivalent.

(1)dmR =n '

(2) For every locally finite open collection {U,jy<t} in R and closed collection (F,|y<lt) suck
that -

F.CU, for every <t
there exists an open collection {V,|r<t} in R such that
F,CV,CV,CU,
_ ord {B(Vy))r<t} = n.

(3) For every locally finite open covering {U,|7<t} there exists a closed covering & = {F,|r<t}

such that
F,CU, for every r<:
ordF = n+1l.

(4) For every locally finite open covering {U;|r<lt} of R there exists ane open covering &=
(V. lr<z} such that

v, U, -
ord £ =< n+l,
Proof. (1) implies (2): By virtue of Theorem 1, we can easily see that the statement is held. (23
implies (3): For every locally finite open covering {U,Jy<t} since R is normal, there exists a closed
covering {G;]r<z} such that
G,CU, for every r<z.

By use of hypothesis there exists an open covering {V,]y<z} such that
G,cV,cV,CU,
ord {B(Vp)|r<t} = n.

Fo=V,
Fr=Vr— U (Vala<7}
. for every y<r.
Then by virtue of Lemma 1, §={F,|7<t} is the desired set.
(3) implies (4): In a view of hypothesis, for every locally finite open covering {Ur|y<7} of B

we can obtain a locally finite closed covering § = {F,|7<Cr} such that
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F,CU; for every y<r
ord § <+l
them there exists am cpem covering € such that each elements of € intersets at most n+1 élements
of %. Siore R is fullly momal, we can choose an open covering 9 such that
DrLE ‘ '
Lett
L={V,|r<s},
Viy=S8(F;, DINY;
them &= (W, |y<z) is the desired open covering.

We shaill show it
8= (V,|r<z}
i® am opem coveuing of ender = n+1. Suppose
n4+2
NVr#ep. -
i=1 .
voiHoeme
V7e=8(Fr, D)NUre
Let
zEVn-‘-‘S(F b ) i))ﬂUru
i=1, 2, ...... , N +2
them
z&ES(Fy, D) and z&Uy,
simee '

SFp, D)=U DED |FrD#£P.) i=1,2, o, n+2
there exists 2 memier D of D such that o '
FﬂnDj¢¢ and ng;,

]=1’ 2, ...... ,n +2
simee
ne2
(UDpNFrs
a+2
and IE.ULD,'.
i=
We heve

Ubevscor<e.

= .

Hemee there exsts 2 menlter S, D) of D* such that
a+2 )
jl;lleCS(D, D)

By vintue of

. D*LE,
We Iave 2 member C of € satisfying
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S, ®)cC

therefore
n+2
.UlD,-cS(D, D)cC
i=

and CNFr.F£P, i=1,2, e, n+2
This is a contradiction. 4
(4) implies (1): By virtue 2.1 it is clear. _
COROLARY. Let R be a paracompact. For every open covering {U,|yEl'} of R there exists a
closed covering § = {Fy|r<I) such that
F,CU,
ord § = n+4+l
Then _
dim R < n.
Proof. For any locally finite open covering {U,—]TE_I'} of R, by use of hypothesis there eXists a
closed covering § = {Fy]yETl'} such that
F,CU,
ord § = n+l.
Therefore
dim R < n.
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