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By D. V. Thampuran 

It seems that every property of a uniform space has its analog for quasiuniform 

spaces. That quasiuniform spaces have a certain kind of symmetry can be inferred 
from the symmetry exhibited by their bitopological spaces; the problem appears 
to be the recognition and utilization of this symmetry. 

That a quasiuniformity is generated by the famiIy of aII unifonnly continuous 
quasimetrics is one of the results proved in this paper. 

Nachbin [4] and Tamari [7] have observed that a quasiuniforIll space gives rise 
naturaIIy to a bitopological space. KeIIy [1]. Lane [3]. and Stoltenberg [6] have 

proved several results on quasiuniform and bitopological spaces. Pervin [5] has 

proved a quasiuniformization theorem for a topological space. Thampuran [8] has 
proved that a bitopological space is completely regular iff it is homeomorphic to a 

subspace of a product of quasi metric spaces. But there does not seem to have been 

a systematic aCCOllnt of the interrelationships between quasiuniform spaces and 
their bitopolgical spaces; such an account is attempted here. In the terminology of 
this paper the analogous nature of the results for unifonn and quasiuniform 
spaces can be cIearIy exhibited. 

Unless othel' wise specified the tel'Il1S used in this paper have the same meaning 
as in Ke끄ey [2]. 

Let M be a set and L the cartesian product of M with itself. If UCL then Cx.y) 

ε U or xUy ￦ill be used to denote the same fact. For U. VCL the composition 

UV will stand for the set of aIl pairs Cx, z) such that xVy and yU z for some y. 

For ACM ￦e will wIÏte AU={y: xUy for some x in A} and UA= {y: yUx for 

some x in A} : if A contains only one point x then we will write xU and Ux for 

AU and U A. The diagonal which is the set of aII pairs Cx, x) for x in M wiII be 

denoted by 6. For a subset A of M denote by cA the complement of A. 

DEFINITON 1. A nonempty family 2'/ of subsets of L is said to be a quas쩌쩌formi’ty 

for M iff 

(i) each member of 2'/ contains the diagonal 

(ii) U in 2'/ impIies there is V in 2'/ such that VVCU 
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(iii) U, Vεft! imply Unv ε g 
(iv) UCVCL and U ε ft! imply V ε ft!. 

We wiIl call the ordered pair (M，~) a quasiunifonn space. 

DEFINITION 2. A subfamily sð of a quasiuniformity W is called a base for W iff 

each member of W contains a member of ‘'?ð. A subfamily .9' of W is said to be a 

subbase for ft! iff finite intersections of members of .9' is a base for ft!. 

THEOREM 1. A lamily sð 01 subsets 01 L z's a base 10γ a quasz"unz"lormz"ty lor M 

zJI 
(i) each member 01 sð contaz"ns the dz'agonal 

(ii) U ε sð z"mpUes there z"s V z"n sð such that VVζU 

(iii) the iηtersecUon 01 tμ10 ’nembers 01 sð contaz"ns a member. 

THEOREM 2. A la깨ly .9' 01 sμbsets 01 L z"s a subbase lor a quasiμnzformzïy lor 

M zJ 
(i) each membeγ 01 ‘9' contaz"ns the dz'agonal 

(ii) U z"n ‘9' z"mpUes there z"s V z"n ‘9' sμch that VVCU 

DEFINITION 3. Let Y ’ ‘:T' be two topologies for M. Then the ordered triple 

(M, Y ’ ‘:7') is said to be a bzïopologz"cal space. We wiIl call ‘:T the lelt and Y~ 

the r z"ght topology of the bitopological space (M. Y ’ ‘:T'). 

When there can be no ambiguity we wiIl denote this bitopological space by M. 

Let W be a quasiuniformity for M. Denote by Y the famiIy of all subsets T 

of M such that x in T impIies UxCT for some U in ft!: it is clear Y is a 

topology for M. Let Y' be the family of all subsets T of M such that x in T' 

implies xUCT for some U in ft!. Then Y ’ is alsó a topology for M. 

DEFINITION 4. We wiIl calI Y the 1행 topology of W’ ‘:7' the r z"ght topology 

of ft!, (M, ‘:T) the left and (M, Y') the right topological space of W and (M, ft!, 

Y ’ ‘7 ’) the bitopologcal space of ft!. 

When there is no risk of confusion we wiIl denote both the quasiuniform space 

(M. ft!) and its bitopological space by M or (M, ft!). 

THEOREM 3. Let (M, ft!, ‘:7, ‘:T') be a bz"topologz"cal space and let A be a subset 

01 M. Then the Y- z"nterz"or 01 A z's {x: UxζA lor some U in W} and the Y'­
Z·ηterior 01 A z"s {x: xUCA lor some U 쩌 ft!}. 

PROOF. Let B be the set of a lI points x such that U xCA for some U in ft!. 
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Then the ‘.9"'"-interior of A is a subset of B and B is a subset of A. Hence the 

interior of A is equal to B if B is open. Let xεB. There is then a U in Z! such 

that U xCJI.. N ow there is V in Z! such that VVζU， if yεVx then VyCVVxCUx 

C A- Hence y ε B and so VxCB which impIies B is open. 

The other part of the theorem can be proved in the same way. 

COROLLARY. Re!atz"ve to ‘7 ’ the set Ux is a nez.ghborhood 01 x and the lamily 

01 all Ux lor U z.n Z! z.s a base lor the neighborhood system 01 x. Also, relatz"ve to 

.!T' the set xU is a nez"ghborhood 01 x and the lamily 01 all xU lor U E Z! is a 

base lor the neighborhood system 01 x. 

COROLLARY. II .9! z.s a base (or subbase) lor the quasiunzjormz"ty Z! then lor 

each x, 1’elative to .!T and ‘:T', the lamiUes 01 sets U x and xU lor U z.n !JJ aγe 

respectively bases (or sμbbases) lor the neighborhood system 01 X. 

Let Z! be a quasiuniformity for M and Z!' the family of all inverses of members 

of Z!. Then the left and right topologies of Z!' are respectively the right and left 

topologies of Z!. Hence we get no new topologies from ~'. 

THEOREM 4. Let (M, Z!) be a qμasz·μnilorm space and A a subset 01 M. Then 

the ‘:T-closμre 01 A is n {AU : UεZ!} and the ‘.9"'"'-closμre 01 A z.s n {U A : U ε ~}. 

PROOF. Relative to ‘.9"'", a point x is in the closure of A iff Ux intersects A for 
each U ε Z! and this happens iff x ε AU for each U ε Z!. The proof for the second 

part is simiIar. 

LEMMA 1. Let V , Y be sμbsets 01 L. Then 

VYV=U{VxXyV: xYy} and 

V- 1YV- 1= U{xVXVy: xYy}. 

Let (M，~’ ‘7 ’ ‘.9"'"') be a bzïopological space, .27 the product 01 the topologies Y , 

.!T' z.n this order and 2' the product 01 the topologies ‘:T', Y in this order. Then 

(L ,2', 중) z.s a bzïopological space. 

THEOREM 5. Let Y be a sμbset 01 L. Then the 2'-closure 01 Y is n{VYV : V 

ε Z!} and the .27-closure 01 Y z.s n{V-1YV-1 : V ε Z!}. 

PROOF. Let Z be the 2'-closure of Y , V a member of ~ and xZy_ Now xVX 

Vy intersects Y iff there is (μ， v) in Y such that (x， y)ε VuXvV, that is, iff 

(X， y)EU{Vμ× νV: μYv} = VYV. Hence the result follows. 
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The other part can be proved in the same way. 

THEOREM 6. Let ZI be a quasiunzformzïy lor M. Then the lamUy 01 all sf"’­

closed ηzembers 01 ZI z.s a base lor ZI and the lamUy 01 all Sf'-closed members 01 

ZI' is a base lor ZI'. 

PROOF. Let U be a member of ZI. There is then V in ZI such that VVVζU. 

But VVV contains the sf" -closure of V and the first part of the theorem follows. 

The proof of the second part is similar. 

THEOREM 7. Tlze Sf'-z.nterior 01 a member 01 a quasz'μnilormzïy U z's a member 01 

ZI and the Sf" -z'nterior 01 a member 01 ZI' is a member 01 ZI'. Hence the lamUy 

01 all sf' -open members 01 ZI is a base lor ZI and the lamUy 01 all Sf" -open members 

01 ZI' is a base lor ZI’. 

PROOF. Let U be a member of ZI. Then the Sf'-interior of U is the set of all 

(x ,y) such that WxXyWCU for some W in ZI. Now there is V ε ZI such that 

VVVζU. 1t then follows from lemma 1 that V is a subset of the Sf'-interior of U. 

COROLLARY. Every member 01 a qμasiunilormzïy ZI z's a Sf'-neighobrbood 01 the 

diagonal and every member 01 ZI' z's Sf"-nez"ghborhood 01 the dz'agonal. 

If a member U of ZI is Sf'-open then xU ε .!T' and Ux ε ‘r for each x. There is 

a similar result for closed members of ZI. Hence we have the following relation. 

If A is a .!T -neighborhood of x then there is a .!T-neighborhood B of x such that 

BCA and B is ‘r' -closed; there is a similar result for ‘7 ’ -neighborhoods of x. 

DEFINITION 5. A bitopological space (M, ‘r ’ ‘r') is said to be regular iff 

(i) A is .!T-closed and x ε cA imply there are disjoint sets X , X' such that X ε 

‘r，X'ε‘?’" ACX’ and x ε X and 

(ii) B is ‘r' -closed and yEcB imply there are disjoint sets Y , Y' such that Y ε 
.r, Y'르‘7η， yεY' and BCY. 1t is obvious a quasiuniform space is regular. 

DEFINITION 6. Let (M, ‘r , ‘7η be a bitopological space. 1t is said to be T 1 iff 

each one-point set is both ‘r -closed and ‘r' -closed. 1t is said to be H aμsdoκfl iff 
x , y are two distinct points imply 

(i) there is a .!T-neighborhood of x and a .!T' -neighborhood of y which are 

disjoint and 

(ü) there is a ‘r' -neighborhood of x and a .!T-neighborhood of y which are 

disjoint. 
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A quasiuniform space is said to be T 1 or Hausdorff iff its bitopologicaI space has 

the corresponding property. 

1t is easiIy seen that a Hausdorff space is T 1 and that a reguIar T 1 space ís 

Hausdorff. A quasiuniform space is Hausdorff iff it is T 1. AIso a quasiuniform 

13pace is Hausdorff iff the intersection of aII the menbers of the quasiuniformity is 
the diagonal. 

Let (M, ‘r , ‘!T') be regular. If x, y are distinct and the ‘r -cIosure of x contains 

y then the ‘7ιcIosure of y contains x ; aIso the ‘r' -cIosure of x contains y implies 

the .!J’-cIosure of y contains x. If the Y -cIosure of x intersects a ‘r' -cIosed set 

B then x ε B and if the ‘r' -cIosure of x intersects a Y-cIosed set A then x ε A. 

Uniform continuity 

DEFINITION 7. Let (M, ~)， (N, 'Y) be quasillniform spaces and 1 a function 

from M to N. Then 1 is said to be un때rmly continuous relative to ~ an γ iff 

for every V in γ the set {(x,y) : (f(x)，f(y))εV} is a member of~. We wiII say 

f is a umjorm isomorphism iff it is one to one and both 1 and its inverse are 
uniformly continuous. 

Given a function 1 from M to N define the function f' by l' (x,y) -= Cf(x) , I(y)) 

for aII x, y in M. Then 1 is uniformly continuous iff for each V in γ there is U 

in ~ such that IUcV. If g' is a subbase for 'Y then 1 is uniformly continuous 
iff the inverse under l' of each member of g' is a member of~. 1t is cIear that 

the composition of two uniformly continuous functions is aIso uniformIy continuous. 

Let ~'， 'Y' be the famiIies of inverses of members of ~ and 찢， then 1 is uniformly 

continuous relative to ~ and ~‘ impIies 1 is aIso unifonuly continuous relative to 
~' and 'Y'. 

DEFINITION 8. Let (M, Y ’ ‘r') , (N, ..f‘, ‘f"') be two bitopologicaI spaces and 1 
a function from M to N. We wiII say 1 is contz"nμous iff 1 is both Y -ιY‘ andY' 

-ιf/"' continuous and 1 is said to be a homeom01φ'hism iff 1 is one to one, is continu­

ous and its inverse is continuous. Two bitopologicaI spaces are said to be homeo­

morPhic iff there is a homeomorphism from one to the other. 

THEOREM 8. A μ%찌rmly conti1ZuouS jiμ1ZCtz"01Z z.s cont쩌μous relatz"νe to the 

bitopological spaces 01 the qμasiunilormities and a umjorm z.somorphism is a 

homeom01’þ hz"sm. 
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DEFINITION 9. Let Z! and γ‘ be two quasiuniformities for a set. We will say Z! 

is fz"ner than r or r is coarser than Z! iff γ is a subfamily of Z!. 

Let 1 be a fu끄ction fonn a set M to a quasiuniform space (N, 캉). Then the 

family of all inverses under f' of members of γ is a base for a quasiuniformity 

for M and this is the coarsest quasiuniformity for which 1 is u미forr띠y COIltjnlmus. 

Let (M, Z!) be a quasiuniform space and N a su뾰et of M. There is then a 

coarsest uniformity γ for N such that the identity map of N into N is uniformIy 

continuous. It is obvious r is the family of aII intersec피ons of members of Z! 

with NXN. Then the topologies of γ are the relativizations of the topologies 
of Zf. 

DEFINITION 10. Let (M, Z!) be a quasiuniform space and N a subset of M. 

Then the r of the preceding paragraph is called the rela#vizaUon of Z! to N or 
the relative quasiunifo1'mity for N and (N , γ) is caIIed a quasiunilorm sμbspace 

of (M, Z!). 

DEFINITION 11. Let (M, Y ’ ‘Y-') be a bitopological space and N a subset of 
M. Let f , f' be the relativizations of ‘Y-’ ‘r' to N. We wilI call (N, ν/’， 

f') a subspace of (M, ‘r , Y ’). 

DEFINITION 12. !et J be an index set and (Mj'.rj ’ ‘7j’), j εJ. a family of 

bitopologicaI spac않. Denote by M the product of the sets M j • by ‘r the product 

of the topologies ‘r j and by ‘Y-' the product of the topologies ‘7/. Then (M, 

.r, Y') is said to be the proudct 01 the spaces (M, Y
j ’ ‘r/) , j εJ. 

DEFINlTION 13. Let J be an index set, (Mj , Z!j)' jEJ a family of quasiuniform 

spaces and M the cartesian product of the sets M j • Then the coarsest quasiuni­

fornùty Z! for M such that projection into each coordinate space is uniformly 

continuous is said to be the prodμct quasz.unzjormz"ty and we wiII say (M. Z!) is 
the product quasiunifonn space. 

That the product quasiunifonnity exists is obvious. Let 1 denote projection into 
the j-th coordinate space and U a member of Z!j. Take V to be the set of aII 
(x, y) such that (f(x) ，f(y))ε U. Let γ'j be the family of aII sets of the form V 
as U varies over 1/j and Iet γ be the union of the families γ'j. Then the product 
quasiuniformity Z! has γ as a subbase. AIso the bitopologicaI space of 1/ is the 
product of the bitopologicaI spaces of Z!j. 
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THEOREM 9. A lunctz"on 1 Irom a quasiun찌rm space to a prodμct 01 quasz.μ%찌rm 

spaces is un쩌rmly contz"nuoμs zJI the composz"tz"on 01 1 μ，üh eveγ'y projectz"on into a 

coordz.nate space is unzJormly contz"nμous. 

Quasirnetrics 

DEFINITION 14. A function d from L to the nonnegative reals is said to be a 

quasψnetric for M iff for all x.y. z in M 

(i) d(x.y) =0 표 x=yand 
(ii) d(x. z) 르d(x.y)+d(y.z). 

(M. d) is called a quasimetric space. The quasiuDiformity ~ having as base the' 
family of all sets of the fOl1l1 {(x.y) : d(x.y) <r}. r>O is said to be the quasiuni­
formity of d. The topologies. etc. of ~ are called the topologies, etc.. of d. 

The product of quasimetric spaces is defined to be the product of their quasiuni­

form spaces. 
Let R be the reals. Define a quasimetric m for R as follows : 

m(x.y) = (y-x. x드y 

α x>y 

DEFINITION 15. We will call m the μsμal quas쩌zetric for the reals, the quasz.u쩌­

lormiψ， etc. , of m the μsual quasiun하brηzüy， etc.. for the reals. 

THEOREM 10. Let (M.~) be a quasz.unilorm space. ~’ the laηzz'ly 01 all inverses 

01 members 01 ~ and !?'.!?" the prodμcts respectz"νely o/~.~' (z'n this order) and 

~'. ~ (Z"n this order). Let d be a quasimetric lor M and L=MXM. Foγ r>O 

let V(r)={(x,y) : d(x.y) <r}. Then 

(i) d. Irom (L ,!?'’ ) to (R. m). is un찌rmly contz'nuous zJI V(r) z's a meηzber 01 
~ lor each r>O and. 

(ii) d, Irom (L.!?') to (R. m). is un찌rmly contz'nμoμs 짜f V(r) is a member 01 
~' lor each r>O. 

PROOF. (i) The fam iIy of all sets of the fOlIl1 {(x.y). (μ， ν)) : (μ， x). (y. ν)르 U} , U 

ε ~ is a base for !?'’. If d. from (L. !?") to (R, m). is uniformly continuous then 

there is U ε ~ such that (u. x). (y. v) in U imply d(μ• v) d(x,y) <r. Hence (μ• v) ε 

U implies d(μ， v) d(v. v) <r and so UCV(r). This proves necessity. Next let V(r) 

be a member of ~ for each r>O. If (u, x). (y. v) are in V(r) then d(μ， ν) 드d(μ， x) 

+d(x， y)+d(y， ν) and so d(μ， ν) d(x,y) <2r from which the unifolln continuity 

of d follows. 
(피) Proof is similar to that of (i). 
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Hereafter, u끄iform ~ continuity of a quasimetric is used in the sense of part Ci) 
of Theorem 10. 

Let Q be a family of quasimetrics for M. Then the family of aIl sets of the 
form V(q, r)={(x,y) : q(x,y) <서， for q in Q and r>O is a subbase for a quasi­
uniformity Z! for M. 

DEFINlTION 16. The quasiuniformity Z!, having as subbase the family of aIl 

sets of the form V(q , r) , for q in Q and r>O, is said to be the quas짜nzfoηnz"ty 

generated by Q. 

It follows from Theorem 10 that the quasiunifonnity generated by Q is the 

coarsest one such that each member of Q is uniformly continuous. For a q in Q 

the family of aIl sets of the f0Ill1 V(q, r) for r>O is a base for the quasiuniform-

ity of q. Hence Z! is the coarsest uniformity such that the identity map of M 

jnto (M, q) is uniformly continuous for each q in Q. We also have the foIlowing 
result. Let P be the product of M with itself as many times as there are members 
of Q. Assign to the q-th coormnate space the quasiunifOllnity of q and to P the 
product quasiuniformity. Define the fllDction 1 from M to P by f( :r)q=x for each 

.x in M and each q in Q. Then the projection of P into t1ie q-th coordinate space 
is the identity map of M into (M, q). By virtue of theorem 9, the unifonnity 
generated by Q is the coarsest which makes 1 unifolluly continuous. Now f is 
one to one and so it is a uDifonl1 isomorphism of M onto a subspace of a product 
,of quasimetric spaces. 

LEMMA 2. Let {Vn : n=α 1, 2, ... } be a seqμence 01 subsets of L=MXM sμck 

tkat Vo=L , every V n contains 6 and Vn+lV"+lVn+1CV ,, for eveη n. Tkere is 

tke1Z a quasz'ηzetric d for M sμck that Vnζ{(x， y) : d(x,y) <2-η}CV"_llor eachposi­

‘tive i1Zteger n. 

A proof of this may be found in KeIley [2]. 

THEOREM 11. Eνery quasiunzformity lor M is generated by the family 01 all 
fJuasimetrics, for M , which are un찌rmly continuous. 

PROOF. Let Z! be a quasiuniformity for M and let Q be the family of all qua­

simetrics, for M , which are unifonnly continuous. It foIlows from theorem 10 

that the quasiunifonllity generated by Q is coarser than Z!. But we get from 

lemr없 2 that if U ε Z! then there is q in Q such that V(q, 흥)CU. Hence the 

quasiuniformity generated by Q is finer than Z!. 
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THEOREM 12. Let M be a quasz.unzform space aηd Q the lamUy 01 all quasz.metrics 

μnzformly contz"nuoμs on M. Then the quasiμnzform space M z.s u짜formly z.somorPhic 

to a subspace 01 the product 01 the quasimetric spaces (M, q) lor q z.n Q. 

DEFINITION 17. A bitopol멍ical space is said to be qμasi-Haμsdoκfl iff it satisfies 

at least one of the two conditions, for a Hausdorff space, spec표ied in definition 6. 

A qllasiuniform space is said to be quasi-Hausdorff iff its bitopological space is 
quasi-Hausdorff. 

TH IIDRFM 13. Let (M, d) be a quasimetric space. For x 싫 M denote by x' the 

z.ntersectz"on 01 the closut’'es 01 x z.n the 1，ζft and right topologz.es 01 d. Let N be the 

set 01 all x' lor x in M and lor x' ,y ’ in N let e(x' ,y')=d(x,y). Then (N , e) is a 

quasi-Hαsdorll qι'lSz.meft-z"c space and the maPPing 1 Irom M to N d，κfz.ned by 

I(x) =x' is an isometry. 

PROOF. If y 르 x' then y’ζx’. AIso y ε x’ impIies x εy' and so x' Cy' . Hence y 

E x' imp1ies x' =y'. Hence x ’ :;i:.y ’ implies x ’ and y' are disjoint and so x 르 y' from 

which it foI1ows that d(x,y) or d(y, x)>O. 

Let u 르 f， Uε y'. Then d(μ， x)=O=d(x， 찌 and d(v， y)=O=d(y， ν). Hence d(u, v) 

=d(x,y). Therefore e(x' ,y ’) is identical with d(μ， v) for every μ in x' and every 

v m y'. It follows that (N, e) is a a quasi-Hausdorff quasimetric space and that 

the mapping 1 is an isometry. 

THEOREM 14. A qμasi-Haμsdorll quasiunzfor~η space (M，~) z's unzformly z.so­

nwrPhz.c to a subspace 01 a product 01 quasi-Hausdorll quasz.metyz.c spaces. 

PROOF. Let Q be the family of all unifonnly continuous quasimetrics on M. 

Then ~ is generated by Q and it is the coarsest quasiuniformity which makeS' 

the identity map of M into the quasimetric space (M, q) unifonnly continuous for 

each q in Q. Now there is an isometry Iq from (M, q) to a quasi-Hausdorff quasi­

mectric space (M q' q*) and so ~ is the coarsest quasiuniformity making each of 

the ma때ps /，자q un퍼1너파ifoI야rm 

Mq with itself as many times as there are q in Q and let 1 be the map of M into 

P defined by I(x)q=자(x). Then ~ is the coarsest quasiuniformity such that 1 is 

uniformly continuous. Now 1 is one, to one, since M is quasi-Hausdorff, and in this 

case 1 is a uniform isomorohism. 

Let 1 denote the closed unit inteπal [0, 1] ; we wilI also denote by 1 the usual 

bitopological space for this interva1. 
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DEFINITION 18. A bitopological space (M, ‘;T’ ‘;T') is said to be comp!etely 

regμlar iff. 

(i) A is ‘;T-cIosed and x is in cA imply there is a continuous function 1 from 

M to 1 such that IA=O and I(x) =1 and. 
(ii) B is ‘;T' -cIosed and y is in cB imply there is a continuous function g from 

M to 1 such that g(y)=O and gB=I. 

It is obvious that complete regularity implies regularity. 

DEFINITION 19. A bitopological space (M, ‘;T’ ‘;T') is said to be be 

fonnizable iff there is a quasiuniformity 2f for M such that ‘;T, 

respectively the left and right topologies of 2f. 

quaslUm­

‘;7" are 

Thampuran (8) has proved that a bitopological space is completely regular iff 

it is homeomorphic to a subspace of a product of quasimetric spaces. Hence we 

have the resu1t; 

THEOREM 15. A bt"topologz"cal space is quasz'um'formz"sable zJI ü z's completely 

regμlar. 

THEOREM 16. Let (M, ‘!T) be a topological space. There is then a quasiunilormzïy 

2f lor M such that ‘!T is the lelt topology 01 2f and the rz"ght topology ‘;T' 01 21 
has the la쩌ly 01 all .5T-closed sets as base. 

PROOF. If ‘;T is indiscrete the resu1t is obvious; so consider the case \vhere it 

is not indiscrete. Let A be a nonempty open proper subset of M. Define a quasi' 

metric d for M by: 

o if x E M , y ε cA 

d(x,y) = 0 if x, y εA 

1 if x ε cA， Y εA 

Let Q be the family of all such quasimetrics for M , a member of Q being obtained 

in this manner from each nonempty open proper subset of M. Let 2f be the 

-quasiuniformity generated by Q. 

The bitopological space of theorem 13 has another property too. If A, B are 

disjoint ‘.r -cIosed and ‘!T' -cIosed subsets of M then there are disjoint .5T -open and 

.5Tζopen sets X , X' such that ACX' and BCX. Such a space may be called normal. 

DEFINITION 20. A quasiuniform space (M,2f) is said to be qμasùnetrizable iff 

1:here is a Quasimetric d for M such that 2f is the quasiuniformity of d. 

It then follows from theorem 11 that a quasiuniform space is quasimetrizable 
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화'f its qn3.siunifornúty has a countable base. If we call a quasimetric d with the 

property that d(x,y)=O 표f x=y a Hausdorff quasimetric then we have the result: 

a quasillnifonll space is Hausdorff quasimetrizable iff it is Hausdorff and has a 

countable base. 

DEFINITION 21. A family G of quasimetrics for a set M is said to be a gage 

iff there is a quasiuniformity ~ for M such that G is the family of all quasimetrics 
which are nniformly continuous. We wi1l also say G is the gage of ~ and ~ is 
the qua.siunifoI'!Ility of G. A family Q of quasimetrics for a set M gellerates a 

quasiuniformity and Q is also said to generate the gage of this quasiuniformity 

and Q is also said to generate the gage of 버is quasiuniformity. 

Let Q be a family of quasimetrics for M and let G be the gage generated by 

'Q. The family of all sets of the fonll V(q, r) for q in Q and r positive is a 
subbase for the quasiunifonnity of G and so a quasimetric g is in G or is uniformly 
continuous iff the set V(g, s) , for each positive s, contains some finite intersection 

of sets V(q, r) for q in Q. 

Every property of a quasiunifol111ity can be expressed in tenns of its gage. We 

w피 ￦Ii요 

g-dist (x, A) =inf {g(x, y) : y ε A} and 
g-dist (A, x)=inf{g(y, x):y ε A}. 

THEOREM 17. Let (M，~， Y ’ ‘:T') be a qμasz"unz"lorm space and G the gage 01 ~. 
Then 

(i) the lamily 01 all sets V(g, r) lor g z"n G and r posz"!z"ve is a base lor iY. 

(ü) the Y-closure 01 a subset A 01 M Z"S the set 01 all x sμch that g-dz"st (A , x) 

=0 lor eavh g z'n G; the ‘:T' -closure 01 A z's the set 01 all points x sμch that g-dist 

(x, A) =0 lor each g z'n G. 

(iii) the ‘:T-z'nterz"or 01 A z's the set 01 all poz"nts x such that V(g , r)xCA lor some 

g z"n G and some posz"tz"ve r; the Y' -z"nterior 01 A z's the set 01 all x sμch that xV 

(g, r)CA lor some g z"n G and some posz"!ive r. 

(iv) a lunction 1 Irom M to a quasμz·%찌rm space (N, r) is unzformly conUnμoμs 

tll lor each member q 01 the gage 01 r and each posz"!z've s there is g in G and r 

þoszïz"ν'e such that g(x,y) <r ÙJψhes q(f(x) , I(y)) <s. 

(v) σ (Mj, iYj) is a quasz"unzform space and Gj z's the gage 01 iYj lor each j in 

an index set ] then the gage 01 the pγoduct quasiunzformz"!y is generated by all 

ijuasimetrz"cs 01 the lorm q(x,y)=g/Xj,yj) for j inJ and gj in Gj. 
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It is shown in the preceding pages that many of the properties of uniform spaces 

have their analogs for quasiuniform spaces. For instance the result, that a quasi­

Hausdorff quasiuniform space is unifonuly isomorphic to a subspace of a product 

of quasi-Hausdorff quasimetric spaces, takes the place of the simiIar theorem for 

Hausdorff uniform spaces. 

Other analogous properties of quasiunifonu spaces such as. completeness, com­

pactness, characterization by coverings, nets, etc. , are deaIt with in sepaIate 

papers. 
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