BITOPOLOGICAL SPACES AND QUASIUNIFORMITIES

By D.V. Thampuran

It seems that every property of a uniform space has its analog for quasiuniform
spaces. That quasiuniform spaces have a certain kind of symmetry can be inferred
from the symmetry exhibited 'by their bitopological spaces; the problem appears
to be the recognition and utilization of this symmetry.

That a quasiuniformity is generated by the family of all uniformly continuous
quasimetrics is one of the results proved in this paper.

Nachbin [4] and Tamari [7] have observed that a quasiuniform space gives rise
naturally to a bitopological space. Kelly (1], Lane [3], and Stoltenberg [6] have
proved several results on quasiuniform and bitopological spaces. Pervin [5] has
proved a quasiuniformization theorem for a topological space. Thampuran [8] has
proved that a bitopological space is completely regular iff it is homeomorphic to a
subspace of a product of quasi metric spaces. But there does not seem to have been

a systematic account of the interrelationships between quasiuniform spaces and
their bitopolgical spaces; such an account is attempted here. In the terminology of
this paper the analogous nature of the results for uniform and quasiuniform

spaces can be clearly exhibited.

Unless otherwise specified the terms used in this paper have the same meaning
as in Kelley [2].

Let M be a set and L the cartesian product of M with itself. If UCL then (x,y)
& U or xUy will be used to denote the same fact. For U,VCL the composition
UV will stand for the set of all pairs (x,z) such that xVy and yUz for some jy.
For ACM we will write AU={y :xUy for some x in A} and UA={y : yUx for

some x in A} ; if A contains only one point x then we will write 2U and Ux for
AU and UA. The diagonal which is the set of all pairs (x,x) for x in M will be
denoted by A. For a subset A of M denote by cA the complement of A.

DEFINITON 1. A nonempty family Z” of subsets of L is said to be a quaszuniformity
for M 1iff

(1) each member of Z' contains the diagonal

(ii) U in Z implies there is V in Z such that VVCU
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(iii) U, Ve imply UNV &
(iv) UCVCL and UeZ imply V<.
We will call the ordered pair (M,Z’) a quasiuniform space.

DEFINITION 2. A subfamily % of a quasiuniformity Z is called a base for Z iff

each member of 2 contains a member of %. A subfamily & of % is said to bea
subbase for Z iff finite intersections of members of % is a base for Z.

THEOREM 1. A family & of subsets of L is a base for a quasiuniformity for M
iff

(1) each member of F contains the diagonal

(i) U= F implies there is V in F such that VVCU

(iii) the intersection of two members of F contains a member.

THEOREM 2. A family & of subsets of L is a subbase for a quasiuniformity for
M if

(i) each member of & contains the diagonal

(i) U in P implies there is V in F such that VVCU

DEFINITION 3. Let ., .~ be two topologies for M. Then the ordered triple
(M, 7,7 ') is said to be a bitopological space. We will call I the left and I ~
the right topology of the bitopological space (M, 5,7 ').

When there can be no ambiguity we will denote this bitopological space by M.

Let Z be a quasiuniformity for M. Denote by & the family of all subsets T
of M such that x in T implies UxCT for some U in Z ; it i3 clear 7 1is a
topology for M. Let .7’ be the family of all subsets 7" of M such that « in T
implies xUCT for some U in Z. Then .7’ is also a topology for M.

DEFINITION 4. We will call 9~ the left topology of Z, 7" the right topology
of , (M, ) the left and (M, .7 ") the right topological space of Z and (M, Z,
9,9 ") the bitopologcal space of Z.

When there is no risk of confusion we will denote both the quasiuniform space
(M,7%) and its bitopological space by M or (M, Z).

THEOREM 3. Let (M, %, 7 ,.7 ') be a bitopological space and let A be a subsel
of M. Then the T —interior of A is {x . UxCA for some U in ZY} and the J '-
interior of A is {x : xUCA for some U in Z'}.

PROOF. Let B be the set of all points x such that UxCA for some U In 7.
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Then the .7 -interior of A is a subset of B and B is a subset of A. Hence the
interior of A 1S equal to B if B is open. Let x=B. There is then a U in Z such
that UxC4. Now there is V' in Z such that VVCU, if y=Vx then VyCVVxCUx
CA. Hence y & B and so VxCB which implies B is open.

The other part of the theorem can be proved in the same way.

COROLLARY. Relative to 7 the set Ux is ¢ neighborhood of x and the family
of all Ux for U in Z is a base for the neighborhood system of x. Also, relative to
T the set xU is a neighborhood of x and the family of all xU for U is a
base for the neighborhood system of x.

COROLLARY. If & is a base (or subbase) for the quasiuniformity Z then for
each x, relative to I and 7 ', the families of sets Ux and xU for U in F are

respectively bases (or subbases) for the meighborhood system of x.

Let Z be a quasiuniformity for M and Z” the family of all inverses of members
of 2. Then the left and right topologies of Z” are respectively the right and left
topologies of Z’. Hence we get no new topologies from Z”.

THEOREM 4. Let (M,Z') be a quasiuniform space and A a subselt of M. Then
the 7 -closure of Ais N{AU : UZ'} and the 9 '-closure of Ais N{UA:UsZ}.

PROOF. Relative to .77, a point x is in the closure of A iff Ux intersects A for
each U = Z and this happens iff x & AU for each U = 7. The proof for the second

part is similar.

LEMMA 1. Let V,Y be subsets of L. Then
VYV =U{VxxyV : xYy} and

VY vl=y{xV xXVy : 2V y).

Let (M, 7,7 ,.9 ") be a bitopological space, & the product of the topologies .7,
T in this order and ZF the product of the topologies & ', 7 inthis order. Then
(L, ¥, ¥ ) is a bitopological space. |

THEOREM 5. Let Y be a subset of L. Then the & -closure of Y ts N{VYV .V
S} and the L-closure of Y is N{V-IYV-1: v e}

PROOF. Let Z be the % -closure of Y, V a member of Z and xZy. Now xV X
Vy intersects Y iff there is (#,v) in Y such that (x,y)e VuXvV, that is, iff
(x,yEeU{VuxvV : uYv}=VYV. Hence the result follows.
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The other part can be proved in the same way.

THEOREM 6. Let Z be a quasiuniformity for M. Then the family of all &£'-
closed members of % is a base for Z and the family of all Z-closed members of
Z’ is a base for Z".

PROOF. Let U be a member of Z. There is then V in Z such that VVVCU.
But VVV contains the F —closure of V and the first part of the theorem follows.
The proof of the second part is similar.

THEOREM 7. The £ -interior of a member of a quasiuniformity U is a member of
Z and the & -interior of a member of Z” is a member of Z’. Hence the family
of all L -open members of Z is a base for Z and the family of all & -open members
of Z' is a base for 7.

PROOF. Let U be a member of Z. Then the “-interior of U is the set of all
(x,y) such that WaXyWCU for some W in Z. Now there is V=% such that
VVVCU. It then follows from lemma 1 that V is a subset of the “#-interior of I/.

COROLLARY. Every member of a quasiuniformily Z is a £ -neighobrbood of the
diagonal and every member of Z' is & -neighborhood of the diagonal.

If a member U of Z is & -open then sU & .7 " and Ux = .7 for each x. There is
a similar result for closed members of 7. Hence we have the following relation.
If A is a .7 -neighborhood of x then there is a 7 -neighborhood B of x such that
BCA and B is .9 ’-closed; there is a similar result for .77 '-neighborhoods of z.

DEFINITION 5. A bitopological space (M,.7 ,.7 ') is said to be regular iff

(i) A is 7 -closed and x = cA imply there are disjoint sets X, X’ such that X =
T, Xeg’', ACX and xr& X and

(ii)) B is 7 '-closed and ye=cB imply there are disjoint setsY,Y’ such that Y =
g, Y9’ y=Y’ and BCY. It is obvious a quasiuniform space is regular.

DEFINITION 6. Let (M,.7,.7 ') be a bitopological space. It is said to be T iff

each one-point set is both % -closed and 7 "-closed. It is said to be Hausdorff iff
x,y are two distinct points imply

(i) there is a 7 -neighborhood of ¥ and a .7 '-neighborhood of y which are
disjoint and

(i) there is a .7 -neighborhood of x and a J -neighborhood of y which are
disjoint.
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A quasiuniform space is said to be T'; or Hausdorff iff its bitopological space has

the corresponding property.

It is easﬂy‘ seen that a Hausdorff space is 'y and that a regular T'; space 1s
Hausdorff. A quasiuniform space is Hausdorff iff it is T;. Also a quasiuniform

gpace is Hausdorff iff the intersection of all the menbers of the quasiuniformity is
the diagonal.

Let (M, 9 ,.7) be regular. If x,y are distinct and the .7 -closure of x contains
y then the .7 '-closure of y contains x : also the .7 "-closure of x contains y implies
the 7 -closure of y contains x. If the .9 -closure of x intersects a .7 '~closed set
B then x &= B and if the .7 "-closure of x intersects a .7 -closed set A then x & A.

Unifoerm continuity

DEFINITION 7. Let (M,%"), (N,7") be quasiuniform spaces and f a function
from M to N. Then f is said to be uniformly continuous relative to Z an 7~ iff
for every V in 7 the set {(x,9) : (f(2),f(9))=V} isa member of Z. We will say
S is a uniform isomorphism iff it is one to one and both f and its inverse are

uniformly continuous.

Given a function f from M to N define the function f/ by f'(x,9) ={f(x), f(»))
for all x,y in M. Then f is uniformly continuous iff for each V in 7 there isU

in Z such that fFUCYV. If & is a subbase for 7Z° then f is uniformly continuous
1ff the inverse under f° of each member of .%° is a member of Z. It is clear that
the composition of two uniformly continuous functions is also uniformly continuous.
Let 777, 77 be the families of inverses of members of Z” and 77, then f is uniformly

continuous relative to Z and 7 implies f 1s also uniformly continuous relative to
7’ and 7.

DEFINITION 8. Let (M, ,7 "), (N, 4, .#) be two bitopological spaces and f
a function from M to N. We will say f is counitinuous iff f is both .9 -#" and .77’
~#"" continuous and f is said to be a homeomorphism iff f is one to one, is continu-
ous and 1its inverse is continuous. Two bitopological spaces are said to be homeo-

morphic iff there is a homeomorphism from one to the other.

THEOREM 8. A uniformly continuous funciion is conlinuous relative lo the

bitopological spaces of the quasiuniformities and a wuniform isomorphism is a
homeomorphism.
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DEFINITION 9. Let Z and 7 be two quasiuniformities for a set. We will say Z
is fimer than 7~ or 77 is coarser than Z iff 7" is a subfamily of Z.

Let f be a function form a set M to a quasiuniform space (N,7 ). Then the
family of all inverses under f* of members of 77 is a base for a quasiuniformity
for M and this is the coarsest quasiuniformity for which f is uniformly continuous.

Let (M,Z) be a quasiuniform space and N a subset of M. There is then a
coarsest uniformity 7~ for N such that the identity map of N into N is uniformly
contfinuous. It is obvious 7 is the family of all intersections of members of Z
with NXN. Then the topologies of 7~ are the relativizations of the topologies
of 7.

DEFINITION 10. Let (M,%Z") be a quasiuniform space and N a subset of M.

Then the 77 of the preceding paragraph is called the relativization of Z to N or
the relative quasiuniformity for N and (NV,7") is called a quasiuniform subspace

of (M,Z).

DEFINITION 11. Let (M,.9,.7 ') be a bitopological space and N a subset of
M. Let ¥, # be the relativizations of .7, . ' to N. We will call (N, £,

A7) a subspace of (M, 7,7 ’).

DEFINITION 12. Pet J be an index set and (M, ,. 7 /), j&]. a family of

bitopological spaces. Denote by M the product of the sets M;, by 7 the product
of the topologies .7 ; and by .7~ the product of the topologies 7 _;. Then (M,
I, J ") is said to be the proudct of the spaces (M,.5 ,, F /), jE].

DEFINITION 13. Let J be an index set, (M i» /4 j), j&] a family of quasiuniform
spaces and M the cartesian product of the sets M,. Then the coarsest quasiuni-
formity Z° for M such that projection into each coordinate space 1s uniformly

continuous is said to be the product quasiuniformity and we will say (M,Z) is
the product quasiuniform space.

That the product quasiuniformity exists i3 obvious. Let f denote projection intd
the 7-th coordinate space and U a member of Z ; Take V to be the set of all

(x,y) such that (f(x),f(»))&=U. Let Vj- be the family of all sets of the form V
as U varies over Z'; and let 77 be the union of the families 7" ;. Then the product

quasiuniformity Z° has 7~ as a subbase. Also the bitopological space of Z is the
product of the bitopological spaces of Z i
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THEOREM 9. A4 function f from a quasiuniform space to a product of quastuniforne
spaces is uniformly continuous iff the composition of f with every projection into a

coordinate space is uniformly continuous.

Quasimetrices

DEFINITION 14. A function d from L to the nonnegative reals is said to be a.
quasimetric for M iff for all x,y,z2 in M

(i) d(x,y)=0 if =y and

(i) d(x,2)=d(x,y)+d(y,2).
(M,d) is called a quasimetric space. The quasiuniformity % having as base the
family of all sets of the form {(#x,%) :d(x,y) <#},r>0 is said to be the quasiuni-
formity of 4. The topologies, etc. of Z are called the topologies, etc., of d.
The product of quasimetric spaces is defined to be the product of their quasiuni-

form spaces.
et R be the reals. Define a quasimetric m for R as follows :

m(x,y)={y-x, X<y
0, x>y

DEFINITION 15. We will call m the usual quasimetric for the reals, the quasiuni-
formity, etc., of m the usual quasiuniformity, etc., for the reals.

THEOREM 10. Let (M,Z') be a quasiuniform space, Z~ the family of all inverses.
of members of Z and L, F’ the products respectively of Z, %" (in this order) and
7' ,% (in this order). Let d be a quasimetric for M and L=MXM. For >0
let V(r)={(x,y) : d(x,y) <r}. Then

(1) d, from (L, F’) to (R,m), is uniformly continuous iff V(r) is a member of
Z for each r>0 and.

(i) d, from (L, ) to (R, m), is uniformly continuous tff V() is a member of
7’ for each r>0.

PROOF, (i) The family of all sets of the form {(x,%), (%, v)) : (%, %), (y,0)=U}, U
=% is a base for . If d, from (L, #’) to (R,m), i1s uniformly continuous then
there is U = % such that (#, x), (v,?v) in U imply d(#,v)—d (%, y) <r. Hence (%,v) <
U implies d(u,v)—d(w,v) <r and so UCV (7). This proves necessity. Next let V(#)
be a member of Z for each r>0. If (#,x), (y,v) arein V(#) then d(«,v)<d(u, x)
+d(x,y)+d(y,v) and so d(u,v)—d(x,y) <2r from which the uniform continuity
of d follows.

(ii) Proof is similar to that of (i).
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Hereafter, uniform continuity of a guasimetric is used in the sense of part (i)
of Theorem 10.

Let Q be a family of quasimetrics for M. Then the family of all sets of the

form Vg, r)={(x,y) : g(x,9)<r}, for q in Q and >0 is a subbase for a quasi-
uniformity Z for M.

DEFINITION 16. The quasiuniformity Z, having as subbase the family of all
sets of the form V{(q,7), for g in Q and >0, is saild to be the qguasiuniformity
generated by Q.

It follows from Theorem 10 that the quasiuniformity generated by Q is the
coarsest one such that each member of Q is uniformly continuous. For a ¢ in Q
the family of all sets of the form V (q,7) for >0 is a base for the quasiuniform-

ity of g. Hence Z is the coarsest uniformity such that the identity map of M

into (M, ¢) is uniformly continuous for each ¢ in Q. We also have the following
result. Let P be the product of M with itself as many times as there are members
of Q. Assign to the g¢-th coordinate space the quasiuniformity of ¢ and to P the

preoduct quasiuniformity. Define the function f from M to P by f(x) ;=% for each
x In M and each ¢ in Q. Then the projection of P mto the g¢-th coordinate space

is the identity map of M mnto (M,q). By virtue of theorem 9, the uniformity
generated by @ is the coarsest which makes f uniformly continuous. Now f is

one to one and so it is a uniform isomorphism of M onto a subspace of a product
.0f quasimetric spaces.

LEMMA 2. Let {V,:1=0,1,2,...} be a sequence of subseis of L=MXM such

that Vo=L, every V, contains N\ and V, {V, Va1 1CV, for every n. There is
then a quasimetric d for M such that V,C{(x,y) : d(x,y) <2™ "}V, _, for each posi-
tive nteger .

A proof of this may be found in Kelley [2].

THEOREM 11. Every quasiuniformity for M is generated by the family of all
quasimetrics, for M, which are uniformly continuous.

PROOF. Let Z be a quasiuniformity for M and let Q be the family of all qua-
gsimetrics, for M, which are uniformly continuous. It follows from theorem 10
that the quasiuniformity generated by Q is coarser than 7. But we get from
lemma 2 that if U =% then there is ¢ in Q such that V' (q, 4)CU Hence the
quasiuniformity generated by Q is finer than 7.
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THEOREM 12. Let M be a quasiuniform space and Q the family of all quasimetrics
uniformly continuous on M. Then the quastuniform space M is uniformly isomorphic
0 a subspace of the product of the quasimetric spaces (M,q) for a in Q.

DEFINITION 17. A bitopological space is said to be quasi- Hausdorff iff it satisfies.
at least one of the two conditions, for a Hausdorff space, specified in definition 6.
A quasiuniform space is said to be quasi-Hausdorff iff its bitopological space 1s
quasi-Hausdorff.

THEORFM 13. Let (M,d) be a quasimetric space. For x in M denote by x the
intersection of the closures of x in the left and right topologies of d. Let N be the
set of all 2" for x in M and for x',y" in N let e(x’,y)=d(x,y). Then (N,e) is a
quas:-Hausdorff quasimetric space and the mapping f from M to N defined by
JF(x)=2x" 1s an isometry. '

PROOF. If y =x’ then y"Cx’. Also y < x” implies x = y" and so x’Cy’. Hence y
e x’ implies x"=y’. Hence x":#9" implies x” and ¥" are disjoint and so x &y from
which it follows that d(x,y) or d(y, x)>0.

Let u=x", vey’. Thend(u,x)=0=d(x,%) and d(v,y) =0=d(y,v). Hence d(u, v)
=d(x,y). Therefore e(x’,y") is identical with d(«,v) for every # in x2” and every
v 1n y'. It follows that (N,e) is a a quasi-Hausdorff quasimetric space and that
the mapping f is an isometry.

THEOREM 14. A quasi-Hausdorff quasiuniform space (M,Z') is wuniformly iso-
morphic to a subspace of a product of quasi:-Hausdorff quasimetric spaces.

PROOF. Let Q be the family of all uniformly continuous quasimetrics on M.
Then 7 is generated by Q and it is the coarsest quasiuniformity which makes
the identity map of M into the quasimetric space (M, g) uniformly continuous for
each ¢ in Q. Now there is an isometry f, from (M, q) to a quasi-Hausdorff quasi-
mectric space (M, ¢*) and so Z is the coarsest quasiuniformity making each of
the maps f, uniformly continuous. Let P be the product of the quasiuniform space

M, with itself as many times as there are ¢ in Q and let f be the map of M into
P defined by f(x),=f,(%x). Then 72/ is the coarsest quasiuniformity such that f is

uniformly continuous. Now f is one, to one, since M is quasi-Hausdorff, and in this
case f 1s a uniform isomorohism.

Let I denote the closed unit interval [0,1] 3 we will also denote by I the usual
bitopological space for this interval.
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DEFINITION 18. A bitopological space (M,.7,.7 ') is said to be completely
regular iff.
(i) A is .7 -closed and «x is in cA imply there is a continuous function f from

M to I such that fA=0 and f(x)=1 and.
(i) B is .7 '-closed and ¥ is in ¢B imply there is a continuous function g from

M to I such that g(y)=0 and gB=1.
It is obvious that complete regularity implies regularity.

DEFINITION 19. A bitopological space (M,.7,.9 ") is said to be be quasiuni-
formizable iff there is a quasiuniformity % for M such that 7, 7’ are
respectively the left and right topologies of 7.

Thampuran [8] has proved that a bitopological space is completely regular iff
it is homeomorphic to a subspace of a product of quasimetric spaces. Hence we
have the result;

THEOREM 15. A bitopological space is quasiuniformisable iff it is completely
regular.

THEOREM 16. Let (M,.7) be a topological space. There is then a quasiuniformity
Z for M such that .9 is the left topology of Z and the right ftopology 7 of Z
has the family of all 7 -closed seis as base.

PROOF. If .7 is indiscrete the result is obvious; so consider the case where it
is not indiscrete. Let A be a nonempty open proper subset of M. Define a quasi-
metric d for M by:

0 ifxeEM, y=cA

dlx,y)=10 if x, ye= A

1 ifxe=cd, ye A4

Let Q be the family of all such quasimetrics for M, a member of Q being obtained

in this manner from each nonempty open proper subset of M. Let % be the
quasiuniformity generated by Q.

The bitopological space of theorem 13 has another property too. If A, B are
disjoint .7 -closed and 7 ’-closed subsets of M then there are disjoint .9 -open and
7 ’-open sets X, X’ such that ACX’ and BCX. Such a space may be called normal.

DEFINITION 20. A quasiuniform space (M,%’) is said to be quasimetrizable iff
there is a quasimetric & for M such that Z is the quasiuniformity of d.

It then follows from theorem 11 that a quasiuniform space is quasimetrizable
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iff its quasiuniformity has a countable base. If we call a quasiﬁletric d with the
property that d(x,y)=0 iff x=y a Hausdorff quasimetric then we have the result:
a quasiuniform space is Hausdorff quasimetrizable iff it is Hausdorff and has a

countable base.

DEFINITION 21. A family G of quasimetrics for a set M is said to be ¢ gage
iff there is a quasiuniformity Z for M such that G is the family of all quasimetrics
which are uniformly continuous. We will also say G is the gage of  and % is
the quasiuniformity of &. A family Q of quasimetrics for a set M generates a
quasiuniformity and Q is also said to generate the gage of this quasiuniformity
and Q is also said to generate the gage of this quasiuniformity.

Let Q be a family of quasimetrics for M and let ¢ be the gage generated by
Q. The family of all sets of the form V(g,7) for g in Q and 7 positive is a
subbase for the quasiuniformity of G and so a quasimetric g isin G or is uniformly
continuous iff the set V(g,s), for each positive s, contains some finite intersection

of sets V(q,7) for g in Q.

Every property of a quasiuniformity can be expressed in terms of its gage. We
will write.
g-dist (x, A)=inf{g(x,y) : y = A} and
g-dist (4,x)=inf{g(y,%) : y = A}.

THEOREM 17. Let (M, 7,7 ,.7 ") be a quasiuniform space and G the gage of % .
T hen

(i) the family of all sets V(g,r) for g in G and r positive is a base for Z.

(ii) the 7 -closure of a subset A of M is the set of all x such that g-dist (A4, x)
=0 for eavh g in G the F '-closure of A is the set of all points x such that g-dist
(x, A)=0 for each g in G. |

(iii) the 7 -interior of A is the set of all poinis x such that V{(g,r)xCA for some
g in G and some positive v ; the . "-inlerior of A ts the set of all x such that xV
(g, r)CA for some g in G and some positive 7.

(iv) a function f from M to a quasuiniform space (N,7”) is uniformly continuous
tff for each member q of the gage of 7 and each positive s there is g in G and 7

positive such that g(x,y) <r implies q(f(x), f(y))<s.

(v) ¢f (M is /4 j-) 1S a quasiuntform space and G}- s the gage of ; for each j in
an ndex set | then the gage of the product quasiuniformity is generated by all
quasimetrics of the form q(x,y)=g:(x;,9;) Jor 7 in | and g; in G,
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It is shown in the preceding pages that many of the properties of uniform spaces
have their analogs for quasiuniform spaces. For instance the result, thata quasi-
Hausdorff quasiuniform space is uniformly isomorphic to a subspace of a product

of quasi-Hausdorff quasimetric spaces, takes the place of the similar theorem for
Hausdorff uniform spaces.

Other analogous properties of quasiuniform spaces such as completeness, com-

pactness, characterization by coverings, nets, etc., are dealt with in separate
papers.

State University of New York
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