A TOPOLOGICAL PROPERTY OF THE REALS

By Norman Levine

A fundamental property of the reals with the standard topology is that the
rationals and the irrationals are both dense in the reals. It is this property which
motivates the author to make the following.

DEFINITION. A topological space (X,.9 ) has property R (or is an R-space) iff
there exists a set A C X such that ¢(A)=X=c(Z A), c denoting the closure operator
and ¥ denoting the complement operator.

In this paper we give several characterizations of R-spaces and investigate some
of their stable properties.

THEOREM 1. A space (X,.7 ) is an R-space iff there exists a set AC X such
that Int A=p=1Int €A, Int denoting the interior operator.

PROOF. c(A)=X=c(ZFA) iff €c(A)=0=Fc(FA) iff €c(FEFA)=90=Fc(F A) iff
Int A=¢=Int A.

From theorem 1, we get easily

COROLLARY 2. If (X,.7) has property R, then {x} =7 for no x <= X.
The converse of corollary 2 is false as i1s seen in

EXAMPLE 3. Let X be an mfinite set and suppose that # is the cofinite filter
on X. Itis easy to see that ) & =¢. Now .Z is contained in an ultrafilter % *;
let & ={ptUF *. J is clearly a topology for X. For each set ACX, -either
A F* or A= F * and hence Int A#¢ or Int € A#¢@. Thus, by theorem 1, (X,
7 ) is not an R-gpace. For each xr =X, {x}<.7 holds for no x; for if {y} &
7, then {y}&=.F * and yEeNZF *C ¥ =¢, a contradiction.

In example 3, it was essential that we take an infinite set X, for consider

THEOREM 4. Let (X, .7 ) be a finite topological space such that {x} = .7 holds
for no x=X. Ther (X, F ) is an R-space.

PROOF. This follows immediately from theorem 5.

THEOREM 5. Let (X, ) be a topological space and suppose that J is finite.
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If {x}ye.9 for no x= X, then (X, 7 ) is an R-space.

PROOF. This follows immediately from theorem 6.

THEOREM 6. Let (X, .9 ) be a topological space with the property that {x} & F
for no x = X. Suppose further that every non empty open set contains a minimal non
empty open set. Then (X, 7 ) is an R-space.

PROOF. Consider the collection ¢z of all minimal non empty open sets O%. It 1s
clear that ¢z is a pairwise disjoint collection of sets and that every O* in ¢z contains
at least two points. For each O¥* in ¢z, select a point x* & O0* and let A be the
set of points thus chosen. It is clear that Int A=¢=Int A4 and by theorem 1,
(X, 7 ) is an R-space.

In theorem 7, it will be convenient to have the following

DEFINITION. In a space (X, 7 ), we let Z={(A4, B) : A#¢#B, ANB=¢, AC
¢(B), BCc(A)}. We partially order & as follows: (A4,B)=(C,D) iuf ACC
and BC D.

THEOREM 7. A space (X, . ) is an R-space iff for each non empty open set O
in X, there exists a pair (A, B) & .F such that AUB C O.

PROOF. Suppese that (X, 7 ) is an R-space and let O be a non empty open
set. There exists a set £ such that ¢(E)=X=¢(FFE). Let A=0NE and let B=0()

ZE. Now ¢(B)=c(ONFE)=c(0) D 0O D A.Likewise B C c(A4). It follows that (A4,
B)e 99 and that AUB CO.

Conversely suppose that for each non empty open set, there exists a pair (4, B)
= & such that AUB C 0. It follows then that ##¢. We show now that & hasa
maximal element. To this end, let & be a non empty simply ordered subset of
. Let A*=U{A: (A, B) = Z for some set B} andlet B*=U{B: (4, B)e= % for
some set A}. Clearly, A*#@#£B*, A*N\B*=¢ and c(4*) Dc(4) DB for all (A4,
B) =% and hence ¢ (A*) D B*. Similarly, ¢ (B*) D A*. Hence (4%, B*) & & and
(A*, B*) is an upper bound for %. Let (A%, B¥) be maximal in 4. To show that
(X, 9 ) is an R-space, it suffices to show that c¢(A¥)=X=c(B%) for then ¢(% A¥)
= X. Suppose then that c(4¥)#X. Then O=X —c(A¥) is a non empty open set and by
assumpticn, there exists a pair (&, F)e & such that EUF C 0. Since B* C c(A4%),
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it follows that (A*UE, B* UF) & 4 and (A%, B#¥) is not maximal, a contradiction.

COROLLARY 8. Let (X, ) be locally arcwise connected. Then (X, F ) has
droperiy R.

COROLLARY 9. (X, J ) is an R-space if X=U{A,: @ & 4}, where(A,,, A NT)

is an R-space for each o < A.

PROOF. Let O be a non empty open subset of X. Then ONA, #¢ for some o & 4.
Hence there exist sets A#@#B such that ANB=¢, AUBCONA, and ¢, (A)DB
and ca,(B)DA. It follows then that AUBCO and that ¢(A)DB, c(B)DA.

COROLLARY 10. Let (X, 7)) be an R-space and suppose that O is a non empty
open set. Then (0O,0N.7 ) is an R-space.

We omit the easy proof.

COROLLARY 11. Let X=UA{0, : @ € 4}, where O, is a non empty open set for each

a & 4. Then X is an R-space iff O, ts an R-space for each o & A.

COROLLARY 12. Let Y be an R-space and suppose that Y is dense in X. Then X
s an R-space.

PROOF. Let O be a non empty open subset of X. Then ONY is a non empty
open subset of ¥ and hence there exist sets A#p#B such that ANB=¢, AUBC
ONY and AC cY(B) and B Cc,(A4). It follows then that AUBCO and A C c¢(B),

B Cc(A).

THEOREM 13. Let f: X—Y be an open transformation (continuity not assumed).
IfY is an R-space, then X is an R-space. |

PROOF. There exists a set 4 such that Y=AUZ A4 and Int A=¢=Int €A by
theorem 1. Then X=F"! [AJUf[ZA4], f~! [A1Nf! [FA4] =¢ and Int f~1 [4] =6
~1
=Intf [FA]. Applying theorem 1 again, X is an R-space.

COROLLARY 14. Let (X, 7 )= % {(X, j"a,) o= A} If(Xx,, J ) is an R-space
for at least one v = 4, then(X, .7 ) is an R-space.

The converse of corollary 14 is false as seen in
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EXAMPLE 15. Let 4 be an infinite set and for each o« & 4, let X _={a, b} and let
I ={$,{a}, X }. B (X, T )=X{(X, T ,):acd},then(X, I ) isan R-space
although (X,, J ,) i3 an R-space for no « & 4. To see that (X, J) is an R-

space, let A= ﬂ{P;l (@] :ax=A4}. Then Int A=¢=Int ZA.

We conclude with two sufficient conditions for a space to be an R-space.

THEOREM 16. (X, .7 ) is an R-space if it is separable and every non empty open
set 15 uncountable.

THEOREM 17. (X, 7 ) is an R-space if there exists a countable base {0, : i & P}
with the property that card O,=2¢ for eack .

PROOF. Let x;#y, in O,. Pick x,, ¥, in O, such that card {x;, x,, 3,, ¥,}=4.
In general, we can choose x; ¥;in O, so that card {xy, -, %, ¥, -, y;t=2.. If
A={x;, i E P}, then ¢c(A)=X=c(ZA).

Finally, the author wishes to acknowledge with gratitude the benefit obtained

from conversations with professor E. J. Mickle.

‘The Ohio State University
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