QUASIREGULARITIES AND QUASIREGULAR RELATIONS

By D. V. Thampuran

It is well known (see Császár [1], Smirnov [2]) that the topological space of a proximity relation is completely regular and that every proximity is generated by a uniformity; quasiproximities have similar properties. The object of this paper is to prove the analogs of these properties for quasiregular relations.

Let X be a set. For a subset A of X write $c A=X-A$. If $b \subset 2^{X} \times 2^{X}$ then (A, B) $\in b$ will also be denoted by $(A, B) \in c b$; if A, B consist of single points x, y we will write x, y for A, B.

DEFINITION 1. $p \subset 2^{X} \times 2^{X}$ is said to be a quasineighborhood relation for X and (X, p) a quasineighborhood space iff for all x in X and all subsets A, B, C, D of X

1. $(X, \phi),(\phi, X) \in c p$
2. $(A, B) \in p, A \subset C, B \subset D$ imply $(C, D) \in p$ and
3. $A \cap B \neq \phi$ implies $(A, B) \varepsilon p$.

A quasineighborhood relation q is said to be a quasiregular relation iff
4. $(A \cup B, C) \in q$ implies (A, C) or $(B, C) \in q ;(A, B \cup C) \in q$ implies (A, B) or $(A, C) \in q$ and
5. $(x, B) \in c q$ implies $(x, S),(c S, B) \in c q$ for some $S \subset X ;(A, x) \in c q$ implies $(A, c T),(T, x) \in c q$ for some $T \subset X$.

Let q be a quasiregular relation for X. For a subset A of X define $k A=\{x:(A$, $x) \in q, x \in X\}$ and $k^{\prime} A=\{x:(x, A) \in q, x \in X\}$. Obviously k, k^{\prime} are Kuratowski closure functions for X.

DEFINITION 2. With k, k^{\prime} as defined above, $\left(X, q, k, k^{\prime}\right)$ is said to be the bitopological space of q.

It is easily seen that the bitopological space of a quasiregular relation is regular.
Let A be a subset of X and $U \subset X \times X$, Write $A U=\{y:(x, y) \in U$ for some $x \in A\}$ and $U A=\{y:(y, x) \in U$ for some $x \in A\}$; if A contains only one point x we will write $x U, U x$ for $A U, U A$. We will also write $x U U$ for $(x U) U$ and $U U x$ for $U(U x)$.

Let \mathscr{U} be a family of subsets of $X \times X$ such that for x in X

1. (x, x) is in each member of \mathscr{U}
2. U in \mathscr{U} implies there is V in \mathscr{U} such that $x V V \supset x U$ and $V V x \subset U x$
3. U, V in \mathscr{U} imply $U \cap V$ is in \mathscr{U}
4. $U \subset V \subset X \times X$ and U in \mathscr{U} imply V is in \mathscr{U}.

DEFINITION 3. \mathscr{U}, as defined above, is said to be a quasiregularity for X. For subsets A, B of X take $(A, B) \in q$ iff $A U \cap B \neq \phi$ for each U in \mathscr{U}. Then q which is quasiregular, is said to be the quasiregular relation of \mathscr{U}.

DEFINITION 4. Let $(X, p),(Y, s)$ be two quasineighborhood spaces and f a function from X to Y. Then f is said to be an n-function iff $(A, B) \in p$ implies $(f A, f B) \in s$.

If f is an n-function from a bineighborhood space (X, p, g, g^{\prime}) to a bineighborhood space (Y, s, h, h^{\prime}) then it is obvious that f is continuous.
Let $N=\{1,1 / 2,1 / 3, \cdots \cdots, 0\}$. Define a distance function e for N as follows. For all u, v in N

$$
e(u, v)= \begin{cases}v-u & \text { if } u<w<v \text { for some } w \text { in } N \\ 0 & \text { otherwise. }\end{cases}
$$

For subsets A, B of N take $e(A, B)=\inf \{e(u, v): u \in A, v \in B\}$. Define the quasineighborhood relation n for N as follows: $(A, B) \in n$ iff $e(A, B)=0$. Let $(A, B) \in$ n^{\prime} iff $(B, A) \in n$.
Thampuran [3] has proved the following result. Let q be a quasiregular relation for X. Then

1. $(x, B) \in c q$ implies there is an n-function from (X, q) to (N, n) such that $f(x)$ is 0 and f is 1 on B and
2. $(A, x) \in c q$ implies there is an n-function from (X, q) to (N, n^{\prime}) such that $f(x)$ is 0 and f is 1 on A.

THEOREM. Let q be a quasiregular relation for X. Then there is a quasiregularity \mathscr{U} for X such that the quasiregular relation p of \mathscr{U} has the properties:

1. $q \subset p$
2. $(A, x),(x, B) \in q$ iff $(A, x),(x, B) \in p$ and
3. p and q have the same bitopological space.

PROOF. For each $(x, B) \in c q$ there is an n-function f from (X, q) to (N, n) such that $f(x)$ is 0 and f is 1 on B and so there is a d for X defined by $d\left(x^{\prime}, y^{\prime}\right)=$ $e\left(f\left(x^{\prime}\right), f\left(y^{\prime}\right)\right)$ for all x^{\prime}, y^{\prime} in X; let D be the family of all such d. For each (A, x) $\equiv c q$ there is an n-function f^{\prime} from (X, q) to $\left(N, n^{\prime}\right)$ such that $f(x)$ is 0 and f is 1
on A and so there is a d^{\prime} for X defined by $\mathrm{d}^{\prime}\left(x^{\prime}, y^{\prime}\right)=e\left(f\left(y^{\prime}\right), f\left(x^{\prime}\right)\right.$) for all x^{\prime}, y^{\prime} in X; let D^{\prime} be the family of all such d^{\prime}. Take $E=D \cup D^{\prime}$.

For d in D and $r>0$ take $V(d, r)=\{(x, y): d(x, y)<r, x, y$ in $X\}$. Consider a $U=V(d, r)$ and let x be a point of X. Let $B=c(x U)$. It is easily seen $(x, B) \in c q$ and so $(x, S),(c S, B) \in c q$ for some $S \subset X$. Hence there is an n-function f from (X, q) to (N, n) such that $f(x)$ is 0 and f is 1 on S. For y, z in X take $a(y, z)=$ $e(f(y), f(z))$. Let $V=V(a, 1 / 8))$ and t in $x V$. Then $a(x, t)<1 / 8$ and so $f(t)<1 / 8$. Also $u \in t V$ implies $f(u)<1 / 4$ and so $u \varepsilon c S \subset c B$. Hence $x V V \subset x U$. Similarly we can prove that $V^{\prime} V^{\prime} x \subset U x$ for some $V^{\prime}\left(a^{\prime}, 1 / 8\right), a^{\prime} \varepsilon D^{\prime}$.

Let \mathscr{U} be the family of all subsets U of $X \times X$ such that U contains the intersection of a finite number of the sets $V(d, r)$ for d in E and $r>0$. It is obvious that \mathscr{U} is a quasiregularity for X.

Let $(A, B) \in q$ and take a $U=V(d, r)$ for d in E and $r>0$, Since d is obtained from an n-function it is obvious that $A U \cap B \neq \phi$ and so $(A, B) \in p$. Next, $(x, B) \in$ $c q$ implies there is a d in E such that $U=V(d, 1 / 4)$ implies $x U \cap B=\phi$ and so (x, $B) \in c p$. Similarly $(A, x) \in c q$ implies $(A, x) \in c p$. Hence p and q have the same bitopological space.

State University of New York at Stony Brook

REFERENCES

[1] Á. Császár, Founäations of general topology, New York (1963).
[2] Yu. M.Smirnov, On proximity spaces, Mat. Sb. 31 (73) (1952) 543-574 (Russian).
[3] D. V. Thampuran, Quasiregular relations and functional separation (to appear).

