A NOTE ON ATOMIC MEASURE AND SINGULARITY

By Jung-Soo Woo and In-Suk Lee

In papers [1] and [3], R.A. Johnson left open questions that;

(1) If $\{\mu_n\}$ is a sequence of atomic measures, are $\mu = \sum \mu_n$ and $\bigvee \mu_n$ atomic?

(2) Isn't the regularity of Borel measure μ or ν essential in the following (I) and (I)?

(I) (1) If $\mu_{\alpha}(E) \uparrow \mu_{\alpha}(E)$ for each Borel set E, (2) $\mu_{\alpha} \perp \nu$ for each α and (3) μ or ν is regular, then $\mu \perp \nu$. Hence, if (1) $\mu = \sum \mu_{\alpha}$ or $\mu = \bigvee \mu_{\alpha}$, (2) $\mu_{\alpha} \perp \nu$ for each α and (3) μ or ν is regular, then $\mu \perp \nu$.

(I) Lebesgue decomposition theorem: Suppose μ and ν are Borel measures on a locally compact Hausdroff space X such that μ or ν is regular. Then there exist unique Borel measures μ_0 and μ_1 such that $\mu = \mu_0 + \mu_1$, where $\mu_0 \ll \nu$ and $\mu_1 \perp \nu$.

The purpose of this paper is to give positive answers for above questions, and to obtain that ν is S-singular with respect to μ if and only if ν is singular with respect to μ under the condition that ν is σ -finite measure. Next we get an extension of the form of the Lebesgue extension theorem given by R. A. Johnson [2].

DEFINITIONS. A set $A \subset X$ is *locally measurable* if $A \cap E$ is measurable for each

measurable set ([5], p. 35).

A set $E \in S$ will be called an *atom* for μ if (1) $\mu(E) > 0$ and (2) given $F \in S$, either $\mu(E \cap F)$ or $\mu(E-F)$ is 0.

 μ is called to be *purely atomic* or *simple atomic* if every measurable set of positive measure contains an atom, and μ is called to be non-atomic if there are no atoms for μ .

We shall say that ν is S-singular with respect to μ , denoted $\nu S\mu$, if given $E \in S$ there exists a measurable set $F \subset E$ such that $\nu(E) = \nu(F)$ and $\mu(F) = 0$.

Other terminology and definitions in this note are consistent with those used in Halmos [4].

LEMMA 1. If $\{\nu_n\}$ is a increasing sequence of atomic measures and $\lim \nu_n = \nu$,

Jung-Soo Woo and In-Suk Lee 86

then v is atomic.

PROOF. Suppose ν is not atomic. If $\nu(E) > 0$, there exists a set $G \in S$ such that $\nu(E \cap G) > 0$ and $\nu(E - G) > 0$. Hence there exists integer "m" such that ν_n is not atom for each $n \ge m$. This is a contradiction.

The following theorem gives positive answer of question (1).

THEOREM 2. If $\{\mu_n\}$ is a sequence of atomic measures, then $\sum \mu_n$ and $\bigvee \mu_n$ are atomic.

PROOF. Let $\nu_n = \sum_{i=1}^n \mu_i$ ($\bigvee \{\mu_i; i=1, 2, \dots, n\}$). Then ν_n is atomic for each *n* from the result of R.A. Johnson [1, Theorem 1.1]. Thus $\sum \mu_n$ and $\forall \mu_n$ are atomic.

THEOREM 3. Let μ be a measure on a σ -ring S, ν be σ -finite measure on S. Then v is singular with respect to μ if and only if v is S-singular with respect to μ.

PROOF. Suppose that ν is S-singular with respect to μ . For given measurable set E, there exists a disjoint sequence $\{E_i\}$ such that $E = \bigcup E_i$ and $\nu(E_i) < \infty$ for each *i*. For each *i*, there exists a measurable set $F_i \subset E_i$ such that $\nu(F_i) = \nu(E_i)$ and $\mu(F_i) = 0$. Let $F = \bigcup F_i$, $\mu(E \cap F) = 0$ and $\nu(E - F) = \nu(\bigcup E_i - \bigcup F_i) \leq \nu(\bigcup E_i - \bigcup F_i)$ $F_{i}) = \sum \nu(E_{i} - F_{i}) = \sum (\nu(E_{i}) - \nu(F_{i})) = 0.$

Thus ν is singular with respect to μ .

Conversely if ν is singular with respect to μ , then it is clear that ν is S-singular with respect to μ .

REMARK. R.A. Johnson ([2], p.631) gave a counter example such that $\nu S \mu$ does not imply $\nu \perp \mu$, even for σ -finite measure. But above theorem 3 shows that the example is false and we can easily prove that ν is singular with respect to μ at that example.

From the result of R.A. Johnson ([2], theorem 3.1) and theorem 3, we have the following.

THEOREM 4. If $\{\mu_{\alpha}\}$ is a increasing directly family of Borel measures on locally compact Hausdroff space X such that $\mu_{\alpha} \uparrow \mu$ and $\mu_{\alpha} \perp \nu$ for each α and fixed Borel measure ν , then μ is singular with respect to ν .

A Note on Atomic Measure and Singularity 87

Above theorem4 gives positive answer of question ((2), I)

From theorem 4 and the fact that finite sum of μ_{α} is singular with respect to ν_{α} .

Hence we have

COROLLARY 5. Let $\{\mu_{\alpha}\}$ is a family of Borel measures. If $\mu_{\alpha} \perp \nu$ for each α

and $\mu = \sum \mu_{\alpha}$, then μ is singular with respect to ν .

Next we show an extension of the form of the Lebesgue decomposition theorem given by R. A. Johnson ([2], theorem 3.4)

THEOREM 6. If μ is a measure on a σ -ring S and ν is σ -finite measure on S, then there exist unique measures ν_0 and ν_1 such that $\nu = \nu_0 + \nu_1$, where $\nu_0 \ll \mu$, $\nu_1 \perp \mu$ and $\nu_0 \perp \nu_1$.

PROOF. Let $\mathfrak{M} = \{M \in S: \mu(M) = 0\}$. Clealy \mathfrak{M} is closed under countable unions.

Define a measure ν_1 on S by $\nu_1(E) = LUB\{\nu(E \cap M); M \in \mathbb{M}\}$. Then there exists $\widetilde{M} \in \mathbb{M}$ such that $\widetilde{M} \subset E$, $\nu_1(E) = \nu_1(\widetilde{M})$ and $\mu(\widetilde{M}) = 0$. Since ν is σ -finite and $\nu_1 \leq \nu$, there exists a disjoint sequence $\{E_n\}$ such that $E = \bigcup E_n$ and $\nu_1(E_n) < \infty$ for each *n*, thus there exists $M_n \in \mathbb{M}$ such that $M_n \subset E_n, \nu_1(E_n)$ $= \nu_1(M_n)$ and $\mu(M_n) = 0$ for each *n*. Let $M = \bigcup M_n$, we obtain $\mu(E \cap M) = 0 = \nu_1$ (E-M). Thus $\nu_1 \perp \mu$

Let $\mathcal{R} = \{N \in S; \nu_1(N) = 0\}$, obviously \mathcal{R} is closed under countable unions. Define a measure ν_0 on S by $\nu_0(E) = LUB\{\nu(E \cap N); N \in \mathcal{R}\}$

Then $\nu_0 \ll \mu$ and $\nu = \nu_0 + \nu_1$. Now suppose $\nu_0 + \nu_1$ and $\nu_2 + \nu_3$ are two decompositions of ν . Since $\nu_2 \ll \mu$ and $\nu_1 \perp \mu$, we get $\nu_1 \perp \nu_2$. Similarly ν_0 is singular with respect to ν_3 . Since $\nu_1 \leq \nu_2 + \nu_3$ and $\nu_1 \perp \nu_2$, we have $\nu_1 \leq \nu_3$. $\nu_3 \leq \nu_1$ follows by similar construction. Therefore we get $\nu_1 = \nu_3$. Similarly we obtain $\nu_0 = \nu_2$, which completes proof.

Thus we have

COROLLARY 7. If μ and ν are Borel measures on locally compact Hausdroff space X, then we have the same decomposition.

88 Jung-Soo Woo and In-Suk Lee

Above corollary 7 gives positive answer of question ((2), I).

Kyungpook University

REFERENCES

- [1] R.A. Johnson, An atomic and non-atomic measures, Proc. Amer. Math. Soc. (1970), 650 -655.
- [2] R.A. Johnson, On the Lebesgue decomposition theorem, Proc. Amer. Math. Soc. (1967), 628-632.
- [3] R.A. Johnson, Some types of Borel measures, Proc. Amer. Math. Soc. (1969), 94-99.
- [4] P.R. Halmos, Measure theory, Van. Nostrand, New York, (1950).
- [5] S.K. Berberian, Measure and Integration, Macmillan, New York, (1965).