A CHARACTERIZATION OF THE BEHRENS RADICAL

By R.E. Propes

1. Introduction

In 1954 E.A. Behrens [3] introduced a radical class B lying properly between the Jacobson radical class J and the Brown-McCoy radical class G. Behrens [3]

defined the B-radical. B(R). of a ring R as follows: $B(R) = \{x \in R: y \in (y^2 - y) \text{ for all } y \in (x)\}$, where $(y^2 - y)$ and (x) denote the principal ideals of R generated by the elements $y^2 - y$ and x, respectively. N. J. Dwinsky in [4] presented B as the upper radical class $\mathfrak{S}(M)$ determined by the special class M=all subdirectly irreducible rings with idempotent hearts such that the hearts contain non-zero idempotent elements. In this paper we give a somewhat simpler characterization of the Behrens radical class.

We shall employ the following notation throughout.

- H(R) denotes all homomorphic images of the ring R.
- $\mathscr{U}(R)$ denotes the heart of the ring R.
- $I \leq R$ denotes I is an ideal of the ring R.
- $I \leq R$ denotes $I \leq R$ but $I \geq R$.
- $R \approx R'$ denotes the rings R and R' are isomorphic.
- 0, depending upon the context in which it appears, denotes the ring 0, the

ideal 0, or the class {0}.

We shall use the following characterization of radical classes [], p. 105]. A subclass P of a universal class W of rings is a radical class if and only if P satisfies the following three conditions.

(i) P is homomorphically closed.

(ii) If $\{I_{\alpha}: \alpha \in \Gamma\}$ is a chain of *P*-ideals of a ring $R \in W$, then $\bigcup_{\alpha \in \Gamma} I_{\alpha}$ is a *P*-ideal of *R*.

(iii) If $R \in W$ and if $I \leq R$ such that $I \in P$ and $R/I \in P$, then $R \in P$.

Let W be a universal class of rings and define a subclass B^* of W by $B^* = \{R \in W : R \text{ has no homomorphic image with non-zero idempotent elements}\}$.

49

R. E. Propes

2. Theorems

THEOREM 1. The class B^* is a radical class.

FROOF. We shall show that each of the conditions (i), (ii), (iii) is satisfied by B^{*}. First let $R \in H(B^*)$ and let g(R) be a non-zero homomorphic image of R. If g(R) contained a non-zero idempotent element, then so would the homomorphic image of some ring in B^* . Thus R must be in B^* and hence $B^*=H(B^*)$.

To show that B^* satisfies condition (ii), let $\{I_{\alpha}\}$ be any chain of B^* -ideals of a ring $R \in W$. By way of contradiction assume that $\bigcup_{n} \in B^*$. Then there exists a homomorphism f and an element $x \in \bigcup I_{\alpha}$ such that $f(x) = e = e^2 \neq 0$. Now $x \in I_{\alpha}$ for some α , and $e=f(x) \in f(I_{\alpha}) \in H(B^*) = B^*$. Thus $f(I_{\alpha})$ is a non-zero homomorphic image of $I_{\alpha} \in B^*$ and $f(I_{\alpha})$ has a non-zero idempotent [element—a [contradiction to the assumption that $I_{\alpha} \in B^*$. Hence $\bigcup I_{\alpha} \in B^*$ and condition (ii) is satisfied.

Finally let $R \subseteq W$, $I \leq R$, $I \in B^*$, $R/I \in B^*$. We must show that $R \in B^*$. Again, by way of contradiction, assume that $R \equiv B^*$. Then let f be a homomorphism and let $0 \neq e^2 = e \in f(R)$. Now $e \in f(I)$, because $I \in B^*$. So f(R)/f(I) contains the nonzero idempotent element e+f(I). But then R/I may be mapped homomorphically onto the ring f(R)/f(I) by the homomorphism \hat{f} defined by $\hat{f}(x+I) = f(x) + f(I)$, while $R/I \subseteq B^*$. This contradiction forces R to be a member of B^* .

THEOREM 2. The radical class B* is hereditary.

PROOF. Let $R \in B^*$ and let $0 \neq I \leq R$. If $I \in B^*$, then I has a homomorphic image I/K with a non-zero idempotent element x+K, i.e., $K \leq I$, $x \in I$, $x \in K$, $x^2 - x \in K$. Now $x^2 \equiv K$; for if $x^2 \in K$, then $-x \in K$ and hence $x \in K$. Let K' denote the ideal of R generated by K. By [2, p.186] we have $(K')^3 \subseteq K$. Thus if $x \in K'$, then $x^3 \in (K')^3 \subseteq K$. Since $x \in I$ and $x^2 - x \in K \subseteq I$, we have $x^3 - x^2 \in xK \subseteq K$. But then $x^2 \in K$. Thus $x \in K'$. But $x^2 - x \in K \subseteq K'$ and $x \in K'$ imply that R/K' has a non-zero idempotent element x+K'. This is contrary to the assumption that $R \subseteq B^*$. Hence we must have $I \subseteq B^*$ and thus that B^* is hereditary.

LEMMA 1. [4, Lemma 74]. Let P be a hereditary radical. Then a subdirectly irreducible ring R with heart $\mathcal{U}(R)$ is P-semi-simple if and only if $\mathcal{U}(R)$ is Psemi-simple.

A Characterization of the Behrens Radical

51

LEMMA 2. $B^* \subseteq B$.

PROOF. Since every ring in M is B-semi-simple and since B is the upper radical determined by the class M it suffices to show that every ring in M is B^* -semi-simple. For this let $R \subseteq M$. Then $0 \neq \mathcal{U}(R)$ and $\mathcal{U}(R)$ contains a non-zero idempotent element. Thus $B^*(\mathcal{U}(R))=0$, and so by Lemma $B^*(R)=0$.

NOTE. Let E be the class of all rings whose hearts have non-zero idempotent

elements. Then $B^* \subseteq \mathfrak{S}(E)$, the upper radical determined by the class E. Clealy, since $M \subseteq E$ we have $\mathfrak{S}(E) \subseteq \mathfrak{S}(M) = B$.

THEOREM 3. $B^*=B$.

PROOF. Let $R \in B$ and assume that $R \neq B^*(R)$. Now $R \in B^*$ implies that R/B^* (R) is not zero. Since $R/B^*(R)$ is B^* -semi-simple, $R/B^*(R)$ has a non-zero homomorphic image R/I with a non-zero idempotent element $x+I(B^*(R)\subseteq I, x^2 - x \in I, x \in I)$. But $R \in B$, so we must have $x \in (x^2 - x) \subseteq I$. This is a contradiction. Hence $R \in B$ implies $R \in B^*$, i.e., $B \subseteq B^*$. By Lemma 2 $B^* = B$

THEOREM 4. Let R be a ring. Then $B^*(R) = \bigcup \{I : I \le R \text{ and every non-zero ideal of } R/I \text{ can be mapped homomorphically onto a ring with a non-zero idempotent element} \}$.

PROOF. Since $R/B^*(R)$ is B^* -semi-simple, each non-zero ideal of $R/B^*(R)$ is B^* -semi-simple. Therefore each non-zero ideal of $R/B^*(R)$ can be mapped homomorphically onto a ring with a non-zero idempotent element. Now let I be any

ideal of R such that each non-zero ideal of R/I can be mapped homomorphically onto a ring with a non-zero idempotent element. We show that $B^*(R) \subseteq I$. By way of contradiction assume that $B^*(R) \subseteq I$. Then $0 \neq (B^*(R)+I)/I \leq R/I$ and hence $(B^*(R)+I)/I$ can be mapped homomorphically onto a ring with a non-zero idempotent element. But $(B^*(R)+I)/I \approx B^*(R)/B^*(R) \cap I \in B^*$, i.e., $B^*(R)/B^*(R)$ $\cap I$ can be mapped homorphically onto a ring with a non-zero idempotent element. This is a contradition, because $B^*(R)/B^*(R) \cap I \in B^*$. Hence $B^*(R) \subseteq I$ and so B^* $(R) \subseteq \cap \{I: I \leq R \text{ and every non-zero ideal of } R/I \text{ can be mapped homomorphically}$ onto a ring with a non-zero idempotent element}. But $B^*(R)$ is such an ideal Iand so equality obtains.

State University College of New York at Potsdam

R. E. Propes

REFERENCES

- [1] S.A. Amitsur: A general theory of radicals, I. Radicals in rings and bicategories, Am.J. Math. 76(1954), 100-125.
- [2] V.A. Andrunakievitch: Radicals of associative rings, [. (Russian), Mat. Sb. (N.S.), 44(1958), 179–212.
- [3] A.E. Behrens: Nichtassoziative Ringe, Math. Annalen 127(1954), 441-452.
- [4] N.J. Divinsky: Rings and Radicals, University of Toronto Press, Toronto, (1965).

.

-

• •

•