A NOTE ON COUNTABLE-DIMENSIONAL SPACES

Dooho Kim

1. Introduction

In this paper we consider countable dimensional in a metric space. Up to the present we do not know so much about infinite-dimensional spaces as about finite-dimensional spaces. The purpose of this note is to extend some results of the theory of finite-dimensional spaces to countable-dimensional spaces. We shall give a brief study of countable-dimensional spaces.

2. Preliminary concepts.

Let be a collection in a topological space R and P a point of R. Then we mean by the order of U at P the number of members of U which contain P, and we denote it by ord PU.

If the exist infinitely many such members, then ord $_PU=+\infty$. We denote B(U) as the boundary of U. If every closed set of a normal space R is a $G\delta$ -set, then R is called perfectly normal.

2.1 Let $U = \{U_{\alpha} | \alpha \in A\}$ be a locally finite open covering of a normal space R. Then there exists an open covering $B = \{V_{\alpha} | \alpha \in A\}$ such that

$$V_{\alpha} \subset U_{\alpha}$$
 for every $\alpha \in A$.

2.2 A space R is countable dimensional if and only if for every open collection $\{U_{\alpha} | \alpha < \tau\}$ and closed collection $\{F_{\alpha} | \alpha < \tau\}$ such that

$$F_{\alpha} \subset U_{\alpha}$$

and such that $\{U_{\beta}|\beta < \alpha\}$ is locally finite for every $\alpha < b$, there exists an open collection $\{V_{\alpha}|\alpha \lor \tau\}$ such that

$$F_{\alpha} \subset V_{\alpha} \subset U_{\alpha}$$

ord $P(B(V_{\alpha}) | \alpha < \tau) + \infty$ at every point $P \in \mathbb{R}$.

2.3 Let $\{F_i | i=1, 2, \cdots\}$ be a closed covering of a space R such that

Ind
$$F_i \leq n$$
, $i=1, 2, \cdots$

Then

General notations and definitions can be found in (1), (2).

3. Countable-dimensional space.

A metric space R is called countable-dimensional if $R = \bigcup_{i=1}^{\infty} R_i$

for some subspaces R_i of dimension≤O.

Let A_n , $n=1, 2, \dots$ be a sequence of O-dimensional sets of a space R.

Let $U = \{U_{\alpha} | \alpha < \tau\}$ be a locally finite open covering. Then we note also that there exists a closed covering $\mathbf{F} = \{F_{\alpha} | \alpha < \tau\}$ such that

$$F_{\alpha} \subset U_{\alpha}$$

ord
$$_{\mathbf{P}}\mathbf{F} \leq n$$
 for every $\mathbf{P} \in \mathbf{A}_n$

so we can obtain a proposition as the following.

20 數學教育-1970.6

THEOREM Let R be metric space. If R is countable-dimensional, then for every locally finite open convering: $\{U_{\alpha} | \alpha < \tau\}$ of R there exists a closed convering $F = \{F_{\alpha} | \alpha < \tau\}$ of R such that

$$F_{\alpha} \subset U_{\alpha}$$
 for every $\alpha < \tau$

ord
$$_{P}F<+\infty$$
 at every point $P\subseteq R$.

PROOF. Let R be countable-dimensional; Then R is decomposable into countably many O-dimensional spaces A_i , $i=1, 2, 3, \dots$ For every locally finite open covering $\{U_{\alpha} | \alpha < \tau\}$ or R, by the normality of R, there exists a closed covering $\{H_{\alpha} | \alpha < \tau\}$ such that

$$H_{\alpha} \subset U_{\alpha}$$
 for every $\alpha < \tau$,

by virtue of 2.2 there exists an open covering $\mathbf{B} = \{V_{\alpha} | \alpha < \tau\}$ such that

$$H_{\alpha} \subset V_{\alpha} \subset U_{\alpha}$$

 $F_0 = V_0$

ord $P\{B(V_{\alpha}) | \alpha < \tau\} < +\infty$ at every point. $P \in \mathbb{R}$.

Let

$$F_{\alpha} = V_{\alpha} - U(V_{\beta}|\beta < \alpha)$$
 for $\alpha < \tau$

then $\{F_{\alpha} | \alpha < \tau\}$ is the desired closed covering. Now we consider on strong inductive dimension of a metric space. If for any disjoint closed sets F and G of a topological space R there exists an open set U such that

$$F \subset U \subset R - G$$
, Ind $B(U) \leq n-1$,

we say that R has strong inductive dimension $\leq n$, Ind R $\leq n$.

PROPOSITION. Let R be a metric space. If $U = \{U_i \ i=1, 2, \dots\}$ is an open covering of R such that Ind $U_i \leq n$, then

Ind
$$R \leq n$$
.

PROOF. Since R is perfectly normal, we decompose each U_i as $U_i = \bigcup_{j=1}^{\infty} F_i^j$ where F_j^i is closed sets. Then $\left[F_i^j | i, j=1, 2, \cdots \right]$ is a closed covering of R such that

Ind
$$F_i \leq n$$

by virtue of 2.3, Ind $R \leq n$.

The following is hold on a topological space in general. Here let A be a subset of a space R. We denote C A as the complement of A and IntA as the interior of A.

PROPOSITION Let R be a topological space

If D is a dense subset in R, then dim Int (CD) = -1.

PROOF Since non-empty basic open set in R contains an element of D, the complement of D has empty interior. Therefore dim Int (CD) = -1.

References

- (1) J. Nagata, Modern Dimension Theory, Interscience, New York, 1965.
- (2) W. Hurewicz and H. Wallman, Dimension Theory, Princeton, 1941.

제목: A note on countable-dimensional spaces.

이 논문에서는 거리공간 R가 가산적인 차원이 될 필요한 조건을 얻었으며 다음에는 거리공간 R가 가산개의 개집합에 의하여 덮어지고 각 개집합이 강한 귀납적 차원이 n 이하면 R의 강한 귀납적 차원도 n 이하이다.