A CORRECT SYSTEM OF AXIOMS FOR A SYMMETRIC **GENERALIZED TOPOLOGICAL GROUP**

By C. J. Mozzochi

In this paper we introduce the concept of a symmetric generalized topological group and show its relationship to the concept of a symmetric generalized uniform space (introduced by the author in [2]). Throughout this paper (G, \cdot) will denote a group with identity ε . \mathscr{T} will

denote a topology on G, and \mathscr{N} will denote an open base at ε . $A^{-1} = \{a^{-1} | a \in A\}$, $AB = \{ab \mid a \in A, b \in B\}$ where A and B are subsets of G.

(1.1) DEFINITION. (G, \cdot, \mathcal{T}) is a symmetric generalized topological group iff the following axioms are satisfied:

(A.1) For every $x \in G \{ xN | N \in \mathcal{N} \}$ is an open base at x. (A.2) For every $N \in \mathcal{N}$ $N = N^{-1}$.

(1.2) REMARK. If we require that the mapping $f:(x, y) \rightarrow xy$ of $(G \times G)$ onto G be continuous in each variable separately, then $\{xN \mid N \in \mathcal{N}\}$ and $\{Nx \mid N\}$ $\{\epsilon \ \mathscr{N}\}\$ are bases at x for every $x \in G$. If we require that the mapping $g: x \to x^{-1}$ of G onto G be continuous, then for every $N \in \mathcal{N}$ $N^{-1} \in \mathcal{N}$. This latter fact implies that for every $N \in \mathscr{N}$ $(N \cap N^{-1}) \in \mathscr{N}$. But $(N \cap N^{-1})^{-1} = (N \cap N^{-1})$.

(1.3) REMARK. It is easily shown that if F is closed, P is open, and A is an arbitrary subset of G and if x is an arbitrary point in G, then xF, F^{-1} , are closed and xP, P^{-1} , and AP are open subsets of G where $(G, .., \mathscr{T})$ is a symmetric generalized topological group.

(1.4) THEOREM. If (G, \cdot, \mathcal{T}) is a symmetric generalized topological group, then $\overline{A} = \bigcap \{AN \mid N \in \mathcal{N}\}.$

PROOF. Let $y \in \overline{A}$ and $N \in \mathcal{N}$. Then $yN^{-1} \cap A \neq \phi$; so that $y \in AN$. Conversely, suppose $y \in AN$ for every $N \in \mathcal{N}$. Then $y \in AN^{-1}$ for every $N \in \mathcal{N}$; consequently, $yN \cap A \neq \phi$ for every $N \in \mathcal{N}$; so that $y \in \overline{A}$.

(1.5) THEOREM. Let (G, \cdot, \mathcal{T}) be a symmetric generalized topological group. Let F be a closed and C a compact subset of G such that $F \cap C = \phi$. Then there exists $N \in \mathcal{N}$ such that $FN \cap CN = \phi$.

C.J. Mozzochi 64

PROOF. Let $M \in \mathcal{N}$. Let $F_M = FMM^{-1}$. Then by Theorem (1.4) $F_M = \bigcap \{FM\}$ • $M^{-1}W | W \in \mathcal{N} = F$. Hence $F_M \cap C = \phi$ for each $M \in \mathcal{N}$; so that $\{G - F_M | M \in \mathcal{N}\}$ is an open covering of C. Hence there is a finite subfamily $F_{M_i}(1 \le i \le n)$ such that

$$\binom{n}{i=1} F_{M_i} \cap C = \phi$$
.

Let $N = \bigcap M_i$. It is easily shown that

$$NN^{-1} = \bigcap M_i N^{-1} \subset \bigcap M_i M_i^{-1}$$

so that

$$FNN^{-1} \subset \cap FM_iM_i^{-1}$$
.

By taking closures we see that

$$FNN^{-1} \subset F_N \subset \cap F_{M_i}$$
.

Hence $FNN^{-1} \cap C = \phi$; so that $FN \cap CN = \phi$.

We now investigate the relationship between symmetric generalized topological groups and symmetric generalized uniform spaces.

(1.6) THEOREM. Let $(G, ., \mathcal{T})$ be a symmetric generalized topological group. For each $N \in \mathcal{N}$ let $U_N = \{(x, y) | x^{-1}y \in N\}$. Let \mathcal{B} be the collection of all U_N . Then \mathcal{B} is a base for a symmetric generalized uniformity, $\mathcal{U}(G)$, on G such that $\mathcal{T}(\mathcal{U}(G)) = \mathcal{T}$.

NOTE. $AN = \bigcup \{xN \mid x \in A\}$; so that by (A.1) AN is open. But by hypothesis

there exists $b \in AN \cap B$. Since AN is open, b is an interior point of AN; consequently, by (A.1) there exists $W \in \mathscr{N}$ such that $bW \subset AN$.

PROOF of THEOREM(1.6). Clearly, to show \mathscr{B} is a base for some symmetric generalized uniformity \mathcal{U} on G it is sufficient to show that for every $N \in \mathcal{N}$ and for all subsets A, B of G, if $U_M[A] \cap B \neq \phi$ for every $M \in \mathcal{N}$, then there exists $b \in B$ and there exists $W \in \mathscr{N}$ such that $U_W[b] \subset U_N[A]$. But since we have that $U_N[A] = \bigcup \{xN | x \in A\} = AN$ for all $N \in \mathcal{N}$ and for each subset A of G, this is an immediate consequence of the note above. It is clear that $\mathcal{T}(\mathcal{U}(G)) = \mathcal{T}.$

(1.8) COROLLARY. If (G, \cdot, \mathcal{T}) is a symmetric generalized topological group and \mathscr{N} has a least element, say N_0 , then $N_0^2 \subset N$ for every $N \in \mathscr{N}$.

PROOF. Clearly, for every $U \in \mathscr{U}(G)$ we have that $U_{N_0} \subset U$. Consequently, by lemma (2.32) in [2] $U_{N_0} \circ U_{N_0} \subset U$ for every $U \in \mathcal{U}(G)$. Hence if $(x, y) \in U_{N_0}$

A Correct System of Axioms

and $(y, z) \in U_{N_0}$, then $(x, z) \in U_N$ for every $N \in \mathcal{N}$. That is to say for every $N \in \mathscr{N}$ if $x^{-1}y \in N_0$ and $y^{-1}z \in N_0$, then $x^{-1}z \in N_0$. Let $p \in N_0$ and $q \in N_0$. Then p^{-1} is in N_0 ; so that $P^{-1}\varepsilon$ is in N_0 and $\varepsilon^{-1}q$ is in N_0 . Hence $pq \in N$. Thus $N_0^2 \subset N$.

(1.9) THEOREM. If (G, \cdot, \mathcal{T}) is a locally compact symmetric generalized topological group, then $\mathcal{U}(G)$ is complete.

PROOF. Let \mathscr{F} be any filter in G that is weakly Cauchy with respect to $\mathscr{U}(G)$. Since (G, \cdot, \mathscr{T}) is locally compact, there exists a compact neighborhood $N \in \mathcal{N}$, and since \mathcal{F} is weakly cauchy with respect to $\mathcal{U}(G)$, there exists an $x_0 \in G$ such that $U_N[x_0] = x_0 N \in \mathcal{F}$. By (A.1) it is easily shown that xN_0 is compact. We now let $\mathscr{B} = \{E \mid E = F \cap x_0 N \text{ for some } F \in \mathscr{F}\}$. It is easily shown that B is a base for a filter \mathscr{F}_1 in x_0N ; but since x_0N is compact, \mathscr{F}_1 has a cluster point $x_1 \in x_0 N$; which clearly is a cluster point for \mathscr{F} . Hence $(G, \mathscr{U}(G))$ is complete.

(1.10) THEOREM. If (G, \cdot, \mathcal{T}) is a locally compact, T_2 , symmetric generalized topological group, then (G, \cdot, \mathcal{T}) is a topological group.

For a proof of this rather deep result the reader is referred to [1].

Trinity College Hartford, Connecticut

65

U. S. A.

REFERENCES

[1] Ellis, R.: Locally compact transformation groups. Duke Math. J., 24, 119-125, 1957. [2] Mozzochi, C.J.; Symmetric generalized topological structures. (publication pending).