REMARKS ON TOPOLOGICAL LATTICES

By Tae Ho Choe

in [2] Anderson has conjectured that if L 1s a locally compact connected

topological lattice, then L is chainwise connected, i.e., any pair of two
points x and y with x=<y can be contained in a closed connected chain in L.
Anderson and Ward [3] have given an affirmative answer for this; they have

proved it in the fashion of topological semi-lattices.

In this remark, we shall first give its another direct proof and using this,
we shall prove that any locally compact connected topological lattice with 0
and 1 is an acyclic, i.e., H?(L)=0 for all integers p=1, where H¥*( )
denotes the Alexander-Kolmogoroff-Spanier cohomology group with a non-
trivial additive coefficient group. We shall next give serveral equivalent
conditions for a complete Boolean topological lattice to be iseomorphic (i.e.,
lattice-isomorphic and homeomorphic) to the Boolean topological lattice 2%
of all subsets of some set X, where 2 has the discrete topology. Finally we

shall give an affirmative answer to problem 85 in [5]; Is every complete
morphism (i.e., for arbitrary joins and meets) of complete lattices continuous

in the interval topology?

THEOREM 1. If L is a locally compact connected topological latiice, then L is
chaitnwise connected.

PROOF. For a given pair of comparable points ¢ and b with e<b, the closed
interval M=[a,b] (=aV(bAL)) is also a locally compact connected topological

lattice in its relative topology.

Let C be the set of all points p in M such that there exists a compact
connected chain C(ae, ) from a to p. It is easy to see that e<g=<p and peC
imply g€ C (consider gAC(a, p)).

We now show that C is open in M. For an element p of C choose neighbor-
hoods U,V and W of p in M such that V is convex, W¥* compact and UVU

CV C W* (M is locally convex  [1]). For an arbitrary element # in U we
have the closed interval N=[p, p\V«4] which is contained in V. And N 1s a
compact connected topological latticein its relative topology. It is well known
that a compact connected topological lattice is chain-wise connected.
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Therefore there exists a compact connected chain C(p, p\VVu). Seeing C(ea, p) U
C(p, pVu), we have pNVu ¢ C. Thus #eC and hence C isopen in M. Suppose

M\C#[3. Then for an element ¢ of M\C, again choose neighborhoods U, V and
W of ¢ such as the above. If UNC#, then for se U NC we have[s, s\Vi]| CVCW*.
By the reasoning used before it follows that #e¢(C. This is a contradiction.
Therefore UCM\C. Thus C is a non-void closed and open subset of M, and
hence C=M.

COROLLARY 2. If L is a locally compact connected topological lattice with 0
and 1, then L is an acyclic.

PROOF. Let I be a compact connected chain in L from 0 to 1. Let 7 be the
indentity mapping of L to itself and let g be the constant mapping of L into

L defined by g(x)=0 for all x in L. Considering a mapping @ from LX[I into
L defined by @ (x,¢c)=xAc for an element xe¢ L and an elemnt ce I we have
that 7 is a null homotopy. By the homotopy axion of the cohomology, the
induced mappings * and g* are the same. Since :* is an isomorphism and
H?({0})=0 for all integers p=1, we have H’(L)=0 for all integers g¢=1.

THEOREM 3. In a compact topological lattice, distributivity implies infintie
distributivety.

PROOF. Let L be a compact distributive topological lattice. We show that
for an element x of L and any non-void subset B of L, xA(VB)=V(xAB),
where VB=supB and xAB={x/Ab|beB}. Let I be the set of all finite subsets
of B. Setting 2,=VG for each Gel’, and taking the inclusion relation as the
directing relation on /°, we have that the net {z,/G e/} is monotone increas-

ing and V{z;|Gel'}=VB. Since L is compact, the net {z.|Gel'} converges
to its supremum \/{zGIGEI" }, {71. Hence the net {xN\z2:1G el '} converges to
sAN(VA{z |G el'}). Since xAz,=V (xAG), again setting #.=V(xAG), we have
that the net {#,|Gel’} converges to V{u,|Gel'} (=V(xAB)). Hence xA(VB)
=V (xAB) as required.

By the interval topology of a lattice L, denoted by I(L), we mean the
topology defined by taking the closed intervals. {eAL, a\V/LlaecL} as a sub-
base for the closed sets.

For a net {x_|lae D} in a complete lattice L, if lim sup {x_ |aeD}=Ilim inf

{x_l|aeD}=2x, we say that the net {x,} order converges to x. We define a
subset M of L to be closed in the order topology of L, denoted by 0(L) if

and only if no net in M order converges to a point outside of M.
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By a complete subset C of a lattice L we shall mean a non-void subset C of L
such that for each non-void subset S of C, S possesses both a sup S and an inf S
in L, and, furthermore, both supS and infS are in C.For a lattice L, the

smallest topology for L in which the complete subsets of L are closed is called
the complete topology of L, denoted by C(L). It is well known that C(L)C
0(L) (8], and if L is complete, then I(L)CC(L).

THEOREM 4. If L is a complete Boolean lattice then the following are equivalent :
(i) ICL) is Hausdorff.

(ii) C(L) is Hausdorff.

(iii) The meet (or join) operation is continuous on O(L) and O(L) ts compact.

(iv) L is atomic, and hence L=9% for some set X.

PROOF. (1) = (ii) is trivial.

(ii) o (iii). By Corollary 4 in [8], 0(L) is compact. Suppose {9 )1
o € D} converges to (x,y) In (L, OCL))X(L, 0(L)). If z is a cluster point of the
net {x Ay,lce D}, then there is a subnet {x Ay laeD’} of {x Ay,} which
converges to z. Clearly, {r, |ae D’} and {y,lace D’} are subnets of {x_|a € D}
and {y,loce D}, respectively, and contain subnets {xﬁlﬁeD”} and {yglB8e D"}
which order converge to x and y, respectively ([8], Theorem 3). Therefore
{xﬁ/\yBIBED”} order converges to xAy [4], and hence z=xAy. It follows
that {x_ Ay la € D} converges to xAY.

(iii) = (Gv). It is not difficult to see that the unary operation of comple-
mentation in L is always continuous in 0(L). Now suppose that the meet-
operation 1s continuous in 0(L). Using De Morgan’s formulas we can easily
see that the join-operation is also continuous. Hence L is a topological group
under the symmetric difference operation so that L is a regular spacein C(L).
Since 0(L) is always T,, 0(L) is Hausdorff. It follows that X(L,O(L)) is
compact Boolean topological lattice. Hence L is iseomorphic with 2 for some
set X, where 2 has the discrete topology, [6].

(iv) = () is known from [9].

A mapping of complete lattice into a complete lattice is a complete morph-

ism for arbitrary joins and meets iff the mapping preserves arbitrary joins
and meets.

THEOREM 5. Every complete morphism for arbitrary joins and meels of com-
plete lattices ts continuous in the interval topology.

The proof of theorem 5 is immediately from a known result {4] thatif L is
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a complete lattice and {x,lee A}, a net in L, then {x lae A} converges to a
point x in the interval topology iff VoA{x.:ceC} =xsAcVix,:cel],
where C denotes an arbitrary cofinal subset of 4.
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