A GENERALIZATION OF A THEOREM OF ALFSEN AND FENSTAD

By C. J. Mozzochi

In this paper the theorem of Alfsen and Fenstad, namely that every
proximity class of uniform spaces contains one and only one totally bounded
uniform space, is generalized to symmetric generalized uniform spaces
(introduced by the author in [2]). Also, a new characterization of totally

bounded uniform spaces is obtained.

This paper 1s based on part V of the author’s thesis, Symmetric generalized
uniform and proximity spaces, submitted in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in the Graduate School of Arts
and Sciences of the University of Connecticut. The author wishes to acknowl-
edge his indebtedness to Professor E. S. Wolk, under whose direction the

thesis was written.

Let X be a non-void set. For every A,B in P(X) let Uy p=(XAXX)

—((AXB) U(BXA)).
DEFINITION. Let (X,%) be a symmetric generalized uniform space. (X,Z)

is p-correct iff there exists a symmetric generalized proximity 0 on X such
that the family ={U, z|A 0 B} is a subbase for #%. 0 is called the

generator proximity for 7.

LEMMA 1. Let (A4, -, A,) and (By, -, B,) be n-tuples of non-void subsets
of @ set X. Let U=U, g N-NU, p.Let I;={ky, =+, B} and Iy={js, =, 14}
be subsets of {1, +-, n}. Suppose xy € (4, N-NA, NB;N--NB,) and xp¢ 4,
tf tél, and xo¢ B; if it ¢ I,. Then Ulxgl =E, where E is equal to

(X—B )N+ N(X~B, ) N(X—A,) N N(X~A4;).

REMARK. In the sequel to simplify the language we will abbreviate the
hypothesis of Lemnma 1 as follows: “Suppose %y € (A, N NA, NB; N--[1B;)
and x, is in no other A; or B."

PROOF of LEMMA 1. By De Morgan’s law
U=(XXX)—(U [(4XB)U (BXA).
Suppose £ € U [x,] . Then (xy, £) € U;so that since x;, € (4, N+NA4, NB; N+ NB;)
1
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we have that ”‘Bk, =1, o, » and ¢ ¢ AL =1, «-, g. Consequently,
te E and EDOU][xyl. To show the reverse inclusion, suppose there exists

¢, € (E—U[xo]). Then (xp #;)¢U; so that (xp £;) is an element of H [(A;XB))
U(B;XA;)]. Suppose (xy, %) € (A4,XB,) where 1 = m < #. Then since

¢, € E, we have that m#*k forz=1, -, p; so that xy ¢ A,,and m¢ I, whichis
a contradiction. Suppose (xy, #) € (B,,XA4,) where 1<m <mn. Then since
¢, €E, we have that m#j; for 7/=1, -, ¢; sothat x; € B,, and m¢ I, which is
a contradiction. Hence E=U [x,].

REMARK. Let (4, =, A, and (By, -, B,) be n-tuples of non-void
subsets of a set X. Iy={k;, *, kyy and I,={j;, *-, j,} be any two subsets of
{1, <, #} and let
E={xlx € A; iff it € Iy and x € B; iff i € I5}. If B¢, we call E a residual
intersection of the A; and B,.

It is clear that residual intersections are mutually disjoint; so that &%, the
family of all residual intersections of the A; and B,, provides a decomposition
of U{(4;UB;)li=1, .-, n} into mutually disjoint sets.

THEOREM 2. Let (X, Z') be a p-correct symmelric generalized uniform space,
Then (X, Z') is totally bounded.

PROOF. Let UeZ/, and let ¢ be a generator proximity for Z. Then there
exists a finite family of sets A4y, -, 4,;B;, -, B, such that A4; 0 B; for i=
1, o, wand Uy gMNU, p=VCU. Now if U{(4,UByli=1, -, n} # X,
then for any x5e X—U{(4,UB)ii=1, -, n} we have that V{x] =X, and
the theorem follows; so we assume that U{(4;UB)li=1, -, ny=X. Let %
be the family of all residual intersections of the A; and B;. Fromeach Re¢ #
choose one and only one point and denote that point x,. Let S={x,|Re #}.

Clearly, since % is finite, S is also finite. We now show that V' [S]=X. Let
ze X. Since we assume that U{(4;UB))1i=1, -, n}=X, we have that zeR

for some Re %#. Consequently, for some &y, ==, kyj, s Jp 2€ (Ap (e}
AkpﬂB-lﬂ---ﬂqu) and z is in no other A; or B,. But by the definition of S
there exists xp In S such that x,¢€ (A, N ﬂAkpﬂleﬂ--- ﬂBJ-I) and x5 1s1n no
other 4; or B, By Lemma 1 we have that V[xp] is equal to (X—Bj )+
N(X—=B,)N(X—A;)N+N(X—4;). But since 4; 0 B; for all { we have that
z¢ B, for /=1, «-, pand z¢ 4; for /=1, .-, g. Consequently, zeV [xg].
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But z is an arbitrary point in X. Hence V[S]=X; so that U[S]=X.

THEOREM 3. A symmetric uniform space (X, Z') is totally bounded iff for
some proximity 0 on X the family & ={U,4 glA 0 B} 7s a subbase for (X, %).

LEMMA 4. Suppose {A;} and {B;}, i=1, -, n are finite sequences of non-void
subsets of a set X such that for all i A;D B; and |J{B;li=1, -+, n}=X. Then
we have that

F=(XxX)— 0] [(X—4)XB] U [Bx (X—AD] | U [4,x 4]

=1 =1

PROOF of LEMMA 4. Let (x,y)eF. Then since U{B;li=l, -, nj=X we
have that (x, y)¢€ (BkIXBkE) where 1 < k%, <#» and 1<k, <#n. But it is clear
that (x, y) ¢ [(X—4,)XB,l; so that since yeB,, xeAd,. But 4, D B,.
Hence (x, )€ (4, XA,).

LEMMA 5. Let (X, 0) be a proximity space. Let 7 be a (otally bounded
symmetrz'b uniformity on X that is in n*(0), a@ proximity class of symmetric
uniformities on X. Then for every U e % there exist sets Ay, v, A,;By, -+, B,
uch that UDU, g N++NU, p and A;0 B; for i=1,«,n. |

PROOF of LEMMA 5. Let UeZ. We know there exists VeZ such that V=
V-1 and (VoVoV) CU. Then since (X, Z) 1is totally bounded, there exist

sets By, -, B, such that J [B,] =X and QI[B,-XB,-]CV. Let 4,=V [B,]. Since

=1

VIiB] N (X—VI[B]l)=¢, A;>>B;,, i=1, «-, n. Also, by a straightforward
calculation, we can show for 7=1, ..., # that (4;XA4;) CVoVoV. Hence we

have that U [4;XA4;,] CU. But by Lemma 4

=1

(XXX)— U] (X—A)XBIU [BX(X—AD1 | U 14;x A

so that UB“X""A| (] +es ﬂUB,, X—A, (.—_U:
and B; 0 (X—A,) for i=1, -, n.

PROOF of THEOREM 3. Suppose for some proximity o0 on X '={U, sl A0 B}
is a subbase for Z. Then Z is a p-correct symmetric generalized uniformity
on X, and hence by Theorem 2 % is totally bounded.

Conversely, suppose Z is totally bounded. It is known (cf. [3] Theorem
(21.14) and Theorem (21.15)) that for some proximity 0 on X Z en*(0), a
proximity class of symmetric uniformities on X. Supppse A,ﬁ B; for i=1, «-, 2.
For each 7, ¢=1,«., n there exists a symmetric V, €% such that



4 C. J. Mozzoch:

(4;XB;) NV;=¢, and hence such that U, g DV, Consequently, we have
that U= (U‘,:lh__l.rj.1 NeNU4 B_) D (VN NVy); sothat UeZ. By this fact and
Lemma 5 we have that the family ' ={U, zl40 B} is a subbase for Z.

THEOREM 6. Let (X, 0) be a symmetric generalized proximily space. There
exists in mw(0) one and only ome p-correct symmelric generalized wuniformity,

%2 (CT), on X.

LEMMA 7. Let (X, 0) be a symmetric generalized proximity space. Let (C,,
e, C) and (D, -, D,) be n-tuples of non-void subsets of X such that C;0 D,
for i=1, «-, n. Then (Clﬂ---ﬂCH)5 (DyU--UD,).

PROOF of LEMMA 7. Suppose that (CiN--NC,)0 (DN-ND,). Then (C;N
«.NC,)J D, where l<k=<n. But C,2(C;N+-NC,); so that C,0 D, which
is a contradiction.

LEMMA 8. Let (X, 0) be a symmetric generalized proximity space. Then
P 0 Q iff there exist n-tuples (A4, -, A,) and (By, -, B,) of subsets of X such
that (U, g NNU,y g)IPINQ=9, and A, 0 B; for i=1, «-, n.

PROOF of LEMMA 8. If PO Q, then it is clear that U p,olP1 NQ=0¢.

Conversely, let V=U, gN--NUy p. Since V[P]NQ=¢, we have PC
U{(4.UB)li=1, -, n}.Let e={E,, ---, E,} be the pairwise disjoint family of all
residual intersections of the 4; and B; that have a non-void intersection with
P. Clearly, PC M=U{E.lc=1, -+, m}. By Lemma 1 since ¢z is a pairwise
disjoint family, if #;e (PNE, and e (PNE,) where 1 <c <m, then V[{]
=V [{,]. Let F,=V [t] for ¢=1, .-, m where ¢, is a fixed point in £, Then
we have that V[P]=U{F.lc=1, +-, m}. But since V[P] NQ=¢ we have that
QC(X—V [P]); so that by De Morgan’s law QC N where N=N{(X—F_)|
c=1, -, m}. Let E.e¢ 0z where 1 <c¢ <m. We may assume that £, C Ec*'—-AkL
N--NA4, NB; N+ NB; for some &y, -, ky; 7, *, j, and E; intersects no
other A; or B,. Consequently, by Lemma 1and Dz Morgan’s law (X—F_,)
=(B, UUB, UA; U--UA;). Hence by Lemma 7 E*J (X—F,) where 1 <
¢c<m; sothat E.0 (X—F,) where 1 < ¢ < m. Hence again by Lemma 7
M ON: so that P 0 Q.

LEMMA 9. Let (X, Z) be a p-correct symmeiric generalized uniform space
with generator proximity 0. Then 0(Z)=0.

PROOF of LEMMA 9. Suppose P0Q. Then by Lemma 8 there exists
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Ue Z such that U[P] NQ=¢; so that P ¢(Z)Q.
Conversely, suppose P 0(%)Q. Then there exists VeZ such that V[PINQ
=@; so that by Lemma 8 P0 Q.

PROOF of THEOREM 6. For the notation used in this proof see [2]. Let &
={U,4 sl A0 B}. Let F={all finite intersections of members of F}. It is clear
that % satisfies (M.1) and (M.2). By Lemma 8 and Theorem 1 in [2] we
have that % also satisfies (M.3) and (M.4). Consequently, by Theorem
(5) in [2] we have that Z,(0)={UIU=U" and VDOU for some VeZH} is a
symmetric generalized uniformity on X. It is clear that Z,(0) is p-correct,
and by Lemma 9 that #,(0)en(d). We now show that Z5(0) is the only
p-correct symmetric generalized uniformity on X that is in 7(d). For suppose
7 en (0) and (X, 77) is p-correct with generator proximity 0,. Clearly, 0;
# 0 if Z5(0) % 7. But by Lemma 9 we have that 0(7")=0; which is a
contradiction, since we assume 7 e n(0). Hence 7" =7/5(0).

COROLLARY 10. (Alfsen-Fenstad). Let (X, 0) be a proximity space. There
exists in m(0) one and only one totally bounded symmetric uniformity on X.

PROOF. By Theorem 3 and Theorem 6, it is sufficient to show that‘Z/ 5(0)
satisfies the triangle axiom. We note that if VoV, CU,; for i=1, -, #,
then (V;N--NV,)o(V;N---NV,) CU;N-NU, where V, and U, for i=1, -, n
are subsets of (XX X). Consequently, it is sufficient to show that for each
Uy g €Z4(0) there exist a VeZp(d) such that VoVCU, 5. We now show the
existence of such a V. Since A0 B there exist sets C and D such that CN\D
=¢gand C)>>A and D)>B. Let V=U, x_o)NUpg x_p). We show Vol
CU, g- Suppose (x, y) €V and (3, 2z)eV. We must show that (x, 2)eU, g or

equivalently that (x, 2) ¢ (AXB)U(BXA). Clearly, if x ¢ (AUB), then for
every ¢t € X we have that (x,7 ) eU4 g. Hence we may assume that xe (AU B).

Two cases now occur. Case 1, x¢ 4, and Case 2, xe¢ B. These are the only
possibilities for x since A B=a¢.

CLAIM 1. If xe A, then z¢ B. For suppose ze B. Then (3, 2) e (CXB). But
since CND=¢, (X—D) D C; so that ((X—D)XB) D (CXB). Hence (y, 2) ¢V
which is a contradiction. By a similar argument we get

CLAIM 2. If xe¢ B, then z¢ A.
By claim 1 if xe A, then (x, 2) ¢ (AXB); so that (x, 2) eU, 5, By Claim 2
if xe B, then (x, 2) ¢ (BXA); so that (x, 2)eU .
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