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On the Pseudo-Riemannian Spaces

EULYONG PAK

Preliminary. We consider the usual Riemannian spaces whose metric is given as

(1)

and whose affine connection r~J is asymmetric.

Now we put

(2) r~=W} +tlk(Tilk+ Tilk) +tT~

where {/j} is the second symbol of Christoffel with respect to g,j and the Ti~ tensor

represents the torsion of the spaces and non symmetric in i and j. The connection may

be remained preservative as g,j:

Of course, Dhg,J is the absolute derivative of g,J calculated in the space with the

symmetric connection and giJ;h is the absolute derivative of g,J in the Riemannian

spaces without torsion.
Now we suppose the repere ([lJ. [2J)

(3)

where

-;.. ...
{
dM=dx'e,

... ....
dei=w~ek

w~=r~hdxh.

By choosing a map of the space to an Euclidean usual space, one can obtain a
displacement attached on a simple cycle such that the last position of the repCre(3)

coincides with the initial. This displacement may be given by

(4)

where

-;.. ....

{
AM=o/ei

-;.. ....
Aei=O:ek
A=od-do.

represents the difference of two symbols of differentiation d and o. [lJ And further
....

applying successively to the vector elements of M and ei, we have the well known

forms of the relations:

Received by the editors November 20, 1968,



24

(5)
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0'= rkhCdX'dx!J= T\h(ox!dx!-dxkoXk
),

Ok,= R"'hlCdxl dxhJ

where r kk and R"'hl be respectively the tensors of torsion and curvature of the space:

(6)

1. Pseudo-Riemannian mainfolds. A Riemannian manifold R is called a pseudo

-Riemannian sJ:lace R* if the following properties a) and b) are satisfied:

a) The translation such that the origin of the final position of the repere (3) coincides

with the origin of the initial in the displacement attached to a simple cycle in

the tangent to the cycle.

b) The curvature tensor R'Jk/ satisfies the fundamental conditions of the Riemannian
space R:

(7) {R,Jkl=RhliJ

R'Jkl +RiMJ +R'Uh=O.

Under this definition of pseudo-Riemannian, many interesting results were obtained

already (see [2J, [3J). The author wants in this section to confine himself to point

out some basic properties. The condition a) may be realized if we suppose

-'» -'»

AM=CdMwJ

where w is a Pfaffian form

and Vk the components of a vector. Hence we find

(8)

This is the particular case of the semi-symmetric torsion of Schouten.

At that time, one can find from (2) the components of the affine connection:

(9) rk;j= {t} +g;jVk-okJV,

and further, the formula (5) ascribes to

(10) l?"kl=Gk'kl+ gi/Vk,.,,- gihVk,i-OkhVi;l-OklVi;h

+ V,(O\VI-OkIVk)

+ (gaVh - gihVI) V k+ (fllg'h -o\g;z) V·V.

where the notation Vk:kand Vk;k indicate the absolute differentiation with respect to the

fundamental tensor (hJ which grounds to base the Riemannian space without torsion
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and G\h! is the curvature tensor of the Riemdnnian space properly structured upon the

metric (1). [2J.

2. Some properties derived from the condition a). Contraction in (10) with respect

to k and h leads

(11) R,I=G'I+giykAn-2)V1;1 + (n-2)VYl - (n-2)O,IV'V, (=1= R li).

Again, contracting this (11) by go1, we have

(12) R=G+ 2(n-l) V';.- (n -1) (n- 2) V'V,.

Now here, we investigate the following several cases concerned with the number of

dimensions.

Suppose that n)3. then we can deduce easily the following relations from (10),

(11) and (12).

(13)

From this, we obtain the following result:

THEoRE~1 1. If n>3, Weyl's conformal curvature tensor in the pseudo-Riemamzian

space R* with torsion vector is indifferent in the proper Riemannian space R.

The case of n=3 is more clear. that is. the curvature tensor in R* is identically

zero, since the right hand side of (13) vanishes for n=3.

Now we put

(14) Su=2(n-l)R il -g,IR,

Hu=2 (n -1)Gu - g,r;

and remark that DhS,; is the absolute derivative with respect to the connection r,~,

but Sinh denotes the covariant derivative with respect to t~} and they are related with

DhSU=Si/;h - V' (glhS" +O'hS,I) - Si' VI +ShlV,.

Then we can deduce the following from (11) and (12)

(15)

where W'thl represents the right hand side in the relation (13). According to the fact

that W'ihl=O for n=3, we have

(16)
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Thus, we obtain the following.

THEOREM 2. In the 3-dimensional space R* with torsion, the tensor part of the conformal

curvature is equal to the tensor part of the conformal curvature of proper Riemannian

space R.

Next, for the case of n=2 it is simple. The conditions (11) and (12) give us

(17)

That is, the Ricci tensors are same in both spaces. At the end, let us refer to the

condition b) briefly. Since Rkkih=O, it requires

oU
V·=~S vx'f,

and this means the torsion vector constitutes a field of gradient.

3. Some calculations and results. In the space R, we introduce the connection

constructed as

(18)

and for the geodesics

(19)

and for the straight lines

d
2x

i
{ '} d~ d~--+ ' --. --=0ds2 kh ds ds

(20) d
2
x
i + {i} d~ • dr' +Vi- V d~ • dx

i
=0

ds2 kh ds ds k ds ds

where the arc length

dxi dxJ
g ~·---l.iJds ds-·

Of course, it is evident that our space does not always be able to admit the
geodesics on surfaces, but possible on planes. For the sake of this, it is necessary the
systems(see [3J, [4J)

(21) uidxi=O

dUi-Ukr~hdr'=UiW+),iUkduk

agree the complete integrability with Pfaffian form w.

To be rewritten

Uidxi=O
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or

'll

(22) rodX'=O

d~'=[Uk{lt}+g'hUkW+ ut1h + (A,- V;)ukJd~.

(24)

Here, the first condition of integrability gives

and the second condition of integrability gives the relations

G\h,=g'h( Vk;l+ VkV;) -g,,(Vk;h+ VkVh)

-fl,("I;;h-"I,"Ih- g'h VS"I.)

+0\("1;;1 -"I;Y,- ga VS"I.)

-Oki("Ih;1-"I1;h).

In this (24) remarking the properties G\h'=O. we have the conditions

(25) Vi + (n+l)"Ii=-~

where rp be a function of x'.
Further, contracting (24) with gih, we have

(26) -Gk/=gikGkihl=(n-l) (Vk;l+ VkV,)

+"Ik;l- "I~,_ok,V."I'

-ok1("Is;,_"Is"I,_nVS'Y,)

+lh("Ih;l-"I1,.,.)

and by the way the covariant components are calculated as

(27) -Gi,=(n-l)(V1;1 + ViVa

+"I;;l-"Ii"l,-gilVS"Is
- g,,('Ys/S-"Is"Is -nV'''Is)

+"1;,,-"11;1'

Then, the symmetry of Gil calls for

(28) (n-l)Vi +3'Yi= ~i

where ep be a function of x'.
For the case of n) 2. (25) and (28) are independent and hence we deduce
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Accordingly,
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Now getting together mentioned above, we can conclude:

THEOREM 3. In the space with the asymmetric affine connection (18), geodesics (19)
and straight lines (20), if n) 2 then the torsion vector makes a field of gradient and the

space is reduced to the pseudo-Riemannian.
Again, the contraction in (26) leads

(29)

and the other contraction in (24) with respect to k and 1 gives us

(30) -G;h=Yih( P'. + V'V,) - (V.;h+ VYh)

- (n-I) ("Ii..,,-"I('Ih- gih Vs')'.).

Thence, the mixed components are calculated as follows:

(31) -G"z=o\(vs;.+ VSVs) - (V";l+ V"Vz)

- (n-1) (')'''.-1 - ')''''Yz-o''z VS'Ys)'

Finally from above relations (26), ('Xl), (28), (29), (30) and (31), we obtain

(32) O~ ih +YihG"Z + O;YihG
n-2 (n-1)(n-2)

=Yih(V",I+ V"Vz) -O:('Yi..,,-"Ii'Yh-gihVS'Y,).

Accordingly, from (32) and (24), we have

(33)

and further

(O~Yih-O:Yil)G -0
(n-l)(n-2)

Forthwise we obtain the following relations which have to determine the Vi:

(35) -nGih +YihG=n(n-2) (Vi..,,+ VYh) - (n-2)Yih(Vs;.+ V·V,).

Putting

(36)

(37) V'" +V'V'=-~2 +nAn-
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then the condition of integrability of the first of above (36) gives us

29

(38) (n - 2) V.G·'ht- VhG,t + V,G,. +G'h;t - Gi/:"

= (n- 2) (g'h( ~: +AV,) - (1/,( ~:.- + AV.)).
Contracting with g.t, we have

(39)

(40)

That is, the relation (38) can be rewritten as

However, the first term of the left hand side of above should be vanished according

to (33). Thus we have

Gih;Z-Git;h= 2(n~1) (g,. :; -gi/ ~ ).

Thence, we have the following results:

THEORE:\I 4. The condition such that the space (Theorem 3) with torsion admits planes

(surfaces totally rectilinear) is that (33) and (40) are reducible to each other.

THEOREM 5. If n> 3. the condition (40) follows from (33). If n=3. the relations

(35) are identically zero and in any case of either (33) or (40), the Riemannian space is

conformally equivalent with the ordinary Euclidian space. thus, its metric takes the from:

where 'P be a function of x'.

4. A note. The differential equations

d2x' + {t} . dxJ
• dx· + V'- V dx

i
• dx

i
=0

ds2 ]k ds ds J ds ds

of the straight lines of the space and the equations

(25)

of its planes are reciprocal. That is, the integral with 2(n-l) parameters of the st­

raight lines and the integral with 11 parameters of the planes are just as that these

planes totally contain the straight lines. Since then, it is sure that the differential
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systems of the straight lines and the planes are reducible to the differential systems:

(
Q2<p

GiJ=- (n - 2) ox/oxJ

The equations (35) immediately may be resolved and show U=<p whence

v/=~
vXi

and the equations (34) show that putting 1,= - V, is sufficient because 1/ are arbitrary

whatever they must be represented in the form of the derivative ~/.

The differential equations of the geodesics can be written down:

and the differential equations of the straight lines are

Remarking that

we can find

and further

where

x'=a'.il+b',

This shows that our straight lines are the real straight lines of the ordinary
Euclidean space like as we have already proved and they are whole parallel (absolutely
parallel).
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