On the Pseudo-Riemannian Spaces

EuLyone Pak

Preliminary. We consider the usual Riemannian spaces whose metric is given as
¢Y) ds?=g,dx'dx’, ij=1, 2, , n

and whose affine connection I'Y, is asymmetric.

Now we put

@ p={ + 1" (Tur Tw) + 1 T,

where {;} is the second symbol of Christoffel with respect to g,; and the T tensor
represents the torsion of the spaces and non symmetric in ¢ and 7. The connection may
be remained preservative as g,;:

Dig:5=9:;»=0,
3 &f
(Dngzj: '—gi—hL - gikr‘j’;\ - g"*rn,p .
Of course, D,g,, is the absolute derivative of g,, calculated in the space with the
symmetric connection and g, is the absolute derivative of g,; in the Riemannian

spaces without torsion.
Now we suppose the repere ([1], [21)

. -
dM=dx',
@ e
de,;=w'e,
where wt=T"%dx"

By choosing a map of the space to an Euclidean usual space, one can obtain a
displacement attached on a simple cycle such that the last position of the repére(3)
coincides with the initial. This displacement may be given by

—_— -

AM‘——-‘Q‘(B;

€ { - -
de. =k,
where A=08d—db.

represents the difference of two symbols of differentiation d and 8. [1] And further

applying successively to the vector elements of M and ; we have the well known
forms of the relations:
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- 0= T (A de )= T (Srde* — da'61),
Qf=R*,,(dx'ds")
where T%, and R*,, be respectively the tensors of torsion and curvature of the space:
Toa=T"%—T

R = or*, - ol
W="op T TR

()

+ F’ilrksh - Fsihl—‘ksl.

1. Pseudo-Riemannian mainfolds. A Riemannian manifold R is called a pseudo
-Riemannian space R* if the following properties a) and b) are satisfied :

a) The translation such that the origin of the final position of the repere (3) coincides
with the origin of the initial in the displacement attached to a simple cycle in
the tangent to the cycle.

b) The curvature tensor R, satisfies the fundamental conditions of the Riemannian
space R:

) {R:'J'hl=th'f

Riju~+ Rini+ Rusn=0.
Under this definition of pseudo-Riemannian, many interesting results were obtained
already (see [2], [3]). The author wants in this section to confine himself to point
out some basic properties. The condition a) may be realized if we suppose

AM=(dMw)
where w is a Pfaffian form
w=Vdx*
and V, the components of a vector. Hence we find
(8) T=8%V,— 8%V,
This is the particular case of the semi-symmetric torsion of Schouten.
At that time, one can find from (2) the components of the affine connection:
©) D= M+ gV -8V,
and further, the formula (5) ascribes to

10 R pu=CG it gnV",e-— ga V=84V, —a4V, h
SR ZICATEIAN
+(gaV—gaV) VE+ (5"zgu. - akhgu) Vv,

where the notation V., and V*, indicate the absolute differentiation with respect to the
fundamental tensor g;; which grounds to base the Riemannian space without torsion
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and G*,, is the curvature tensor of the Riemannian space properly structured upon the
metric (1). [2].
2. Some properties derived from the condition a). Contraction in (10) with respect
to k and % leads
arn) R.1=Gu+guvk:k(n"2) Va+@~2)V.V, —~(n—2)9,V*V., (FR)).
Again, contracting this (11) by ¢, we have

(12) R=G+2(n—-1DV"%— (- n-V*V,

Now here, we investigate the following several cases concerned with the number of
dimensions.

Suppose that #>>3, then we can deduce easily the following relations from (10),
(11) and (12).

glekh“‘g.thz - "R, — 8" R, +(6kh.‘/.1_6kl(/-h)_R_

k
R~ n—2 n—2 CENICEY))

a3

—_ ko g.G" — gmGkL _ 604G, ﬁj@_.‘l ‘@kh.{]-r -ﬁkzg.hl(i
=G +
il n—2 n—2 m-1n-2)

From this, we obtain the following resuit:

Tueorem 1. If 023, Weyl's conformal curvature temsor in the pseudo-Riemannian
space R* with torsion vector is indifferent in the proper Riemannian space R.

The case of #=3 is more clear, that is, the curvature tensor in R* is identically
zero, since the right hand side of (13) vanishes for n=3.

Now we put

(14) Si=2(n—-1)R;—g.R,

H=2n-1)G,—¢.G

and remark that D,S,; is the absolute derivative with respect to the connection I'f,

but S, denotes the covariant derivative with respect to {}} and they are related with
DyS;=Sun—V*(guSu+ guSe) —SuV,+ S, V..

Then we can deduce the following from (11) and (12)

15 DS, —DSu=Hup+ Huy +2(n—-1) (n-2) WH,,V,

where W*,, represents the right hand side in the relation (13). According to the fact

that W*,,=0 for n=3, we have

(16> DhSil - Dlsih‘_“I_Iil;h - H«‘n;z-
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Thus, we obtain the following.
Tueorem 2. In the 3-dimensional space R* with torsion, the tensor part of the conformal

curvature is equal to the temnsor part of the conformal curvature of proper Riemannian

space R.
Next, for the case of #=2 it is simple. The conditions (11) and (12) give us
(17) ZR;l—g"lR:ZG;l‘—gnG—_—O-

That is, the Ricci tensors are same in both spaces. At the end, let us refer -to the

condition b) briefly., Since R%,,=0, it requires

and this means the torsion vector constitutes a field of gradient.
3. Some calculations and results. In the space R, we introduce the connection

constructed as
(18) = { +g,-av.

and for the geodesics

a2z’ i d¥  de* _
19 ds? +{kh} ds ds =0

and for the straight lines

d2x' il dr*  dx* ; de* di __
(20 ds? {kh} ds s TV Vg =0
where the arc length
; .
dx dx’ =1

9 gs " Tds -

Of course, it is evident that our space does not always be able to admit the
geodesics on surfaces, but possible on planes. For the sake of this, it is necessary the
systems(see [3], [4])

2D w:dx*=0

du,—u % de*=u.m+ Audu*
agree the complete integrability with Pfaffian form w.

To be rewritten

w =0
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du' —u, { ﬁz} dx"— 1,9, V'dxe* + Ve dxt =uy . de* + Au,dx”

or

@2 {u‘-dx‘=0

dw' =T} + gun Voot A=V Ju,Jde
Here, the first condition of integrability gives
'Ygz/.l,; - V,'-
Hence, (22) can be denoted as
23) {u,-dx ==80 .
Hiw =gk by {ih} =14,V g+ U+ U,

and the second condition of integrability gives the relations

C'an=gun(V¥+V*V) —gu (Vi + VIV
=8, (Vip— Y — g V°7,)
+ 85 (Yia— 7Y, — gaVYs)
=& (Yn— Yin) .

@6

In this (24) remarking the properties G, =90, we have the conditions
@5) Vit (et 1y, =-25

where ¢ be a function of #’
Further, contracting (24) with 4%, we have
(26) —G=g"G = (—1) (V¥ + V*V)
+ 74—y, -V
- 6,'1 (Vv —n VeY,)
+ ¢ (Vha = V1a)
and by the way the covariant components are calculated as
@n . —-Gi=m—-1)(Vyu+ V., V)
+Va—TY — gizVs'Y:
—Ga (’Y‘,., - 'YS'Y: - nVS'Ys)
+ 7,‘ P ’Yz g
Then, the symmetry of G, calls for
~ 99
(28) (n"‘l) V, +37;-—' ax,'
where ¢ be a function of '

For the case of n>2, (25) and (28) are independent and hence we deduce
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ou

Vs

Yra—V1a=0.

Accordingly,

t=Zhy Viem Vin=0.

Now getting together mentioned above, we can conclude:

Tueorem 3. In the space with the asymmetric affine conmnection (18), geodesics (19)
and straight lines (20), if n>>2 then the torsion vector makes a field of gradient and the
space is reduced to the pseudo-Riemannian.

Again, the contraction in (26) leads

(29) —=G=n-1) (Ve V'V = (n—1) (Vs =7V, ~nV*,)
and the other contraction in (24) with respect to %k and [ gives us
(30) ~Ga=gu (V5 + V'V) = (Vis + V.V})
— =D ia=Y Y~ g V).
Thence, the mixed components are calculated as follows:
@D —G ="Vt V'V ) = (V54 VYY)
—(n—-1D (=7, = 6" V).

Finally from above relations (26), (27), (28), (29), (30) and (31), we obtain

_ 5i6ih + ga.G&t + 8?9;’1;6
n—2 n—-1)(n—2)
=g (V' + VEV) ~ V=Y =g VYs).

(32)

Accordingly, from (32) and (24), we have
Gty J9C1— 058G =8Gu __(Blgu~8lgu)G _,

33) n—2 m-Dm=-2)
and further
(34) n(Va+ VAV —82(Vo, + V*V,) +a(v i —7*,) — 8 (v, —7°7,) =0,

Forthwise we obtain the following relations which have to determine the V,:

(35) — G+ g,,,G:n(n -2)( Vm +VV)—(n— 2)9;;. (Ve .+ VeV,
Putting
G,
(36) Vi;h+ V,V = n__hz +g,‘hA,
s L Us G
(37) Vi + VeV, =~ +nA

n—2
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then the condition of integrability of the first of above (36) gives us

383 =) VG = VG, + VG +Guy—Gan

=n-2)[g4(-Z5+ 4V) =0 (Zo + V)]
Contracting with ¢, we have
1 9
(39) (1=DViGH -GV, = D5 - (n—1)( 55 +AV,),

That is, the relation (38) can be rewritten as

Mo 4 86 —8G. | 9.6 —9.64  (8lgun—89.0C
= CESNCEY) )
oG
N (”‘D(G-'h.-z—G:z.-h)“‘gm —gc’x—z'*‘!]uW —0

2(n—-1(n—2)

However, the first term of the left hand side of above should be vanished according
to (33). Thus we have

- 1 /7 oG
(40) Gih;l_Gil:h— 2("—1) \g.h axl "gu 8x” ).

Thence, we have the following results:

Tueorem 4. The condition such that the space (Theorem 3) with torsion admils planes
(surfaces totally rectilinear) 1s that (33) and (40) are reducible io each other.

Turorem 5. If >3, the condition (40) follows from (33). If n=3, the relations
(35) are identically zero and in any case of either (33) or (40), the Riemannian space is
conformally equivalent with ihe ordinary Euclidian space. thus, its metric takes the from:

ds*=e?* 3, (dx")?
where @ be a function of x".

4. A note. The differential equations

dx' i\ dy dxt .y, dxT 0 dx
ds® {;k} a5 ds TV Vg =0
of the straight lines of the space and the equations

=99
(25) Vo4t D)v=

of its planes are reciprocal. That is, the integral with 2(r—1) parameters of the st-
raight lines and the integral with » parameters of the planes are just as that these
planes totally contain the straight lines, Since then, it is sure that the differential
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systems of the straight lines and the planes are reducible to the differential systems:

d2x

s =0
wdx' =0, gz;‘ =0.

Putting ds®=¢* > (dx")?, we have

- o 9 9P\ s Iy PP oy 9P Y
Go=~ -2~ a0 o) 0 Egr + =D X(5E )],
The equations (35) immediately may be resolved and show U=¢ whence

_ 99
Vi= ox;

and the equations (34) show that putting v,=—V, is sufficient because 7, are arbitrary
whatever they must be represented in the form of the derivative —g—;,—
The differential equations of the geodesics can be written down:

&y 99 df  di o9 f dit \_
e B S e )—0

and the differential equations of the straight lines are

dx* O dr* di ¢ dx’ )2 0P 20 ]

ds Yo " ds " ds _ax"z( ds ) Tox ¢

Remarking that

=%

=

a2x + op  _dx* dxt =0
ds? oz ds ds —

we can find

and further

L —der, S@r=,

where
r=da'A+b,
dA=+"3(dx)*? .
This shows that our straight lines are the real straight lines of the ordinary

Euclidean space like as we have already proved and they are whole parallel (absolutely
parallel).
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