On Functors Text over Commutative Rings

KEeeaN Lee

Let A, B and C be modules over a commutative ring R. If we take X = A, YV —
B, C— [ as projective resolutions over A, B and an injective resolution over (, respec-
tively, then we get a complex Homg(X, Hom.(Y,I)) of R-modules. Here we can define
a new functor Text, from the category of all R-modules and homomorphisms to itself
such that Text,(A,B,C) = H (Hom.(X, Hom,(Y,I)), where H is the homology functor
(see § 1).

In general it is difficult that we find some properties of Text and compute Text,
(A,B,C). In this paper we shall try to find some properties of Text, and to compute
Text,(A,B,C) under some special conditions (see §§ 1-3 and Example 3). Finally, we
shall prove some properties of Text using spectral sequences (see § 4).

The idea of this paper was obtained from the suggestion of Professor S. MaclLane

and his paper [3]. I would like to express my thanks to him for kind help and gui-
dance.

1. The definition of Text

Let K and L be complexes over a commutative ring R. We shall define a complex
Hom,(K,L) with lower indices as follows.

Set Hom,(K\L) = FI Homg(K,, L,.,) so that an element f of Hom,(K,L) is a family
p=-—=
of homomorphisms f,: K,— L, , for —oo < p<co. When we assume that the
boundaries in K and L are 8, and 9, the boundary 2,/ in Hom,(K,L) is defined by
@u'1)i(hs) =0, (foky) + (=1)""'f, 1(O,k,) and 9,'f = the family of (@,'f), (1)

for k,&K, and f,, f,-,€f. (Note: Consider an element f={f, | f,: K,— L,.,} such
that for each %, € K,, f.k.=0 if m = p in Hom,(K, L). Then we see that

@' oir(lpar) = (=)™ f, (@ koi1)y (@n'f)rCke) = B.(foks)
and (@4/f).(k) =0 m=*=pand p+ 1.)

We know 9,/8,’ = 0 by the calculation:

(@404’ f)o(hs) = 0.((@x'f)(Re)) + (—1)"(0y'f ) o-1(Okks)
= aL(aL<fka) + (- D" “fp—l(axkl’))
+ (_ 1>napr—x (axkp) + <_ 1)2'“ 1fp—l<axaxkp)
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= 9,9, (f?kﬁ) + ("' 1)“18L (f!—l(aKkP>>
+ (“‘DnaL(fp—l(axkp)) +(-1 lfp-z(axaxkp) =0,

where k&K, (see page 43 of [2]).

We shall add a complex M over R(commutative ring) with the boundary 9,, in the
above situation, then we get the complex Hom,(K, Hom,(L,M)) with the boundary 3,
such that

Hom,(K, Hom(L, M)) = IT Hom(K,, Hom,.,(L, M))

p=—c

=11 Homy(K,, T Home(Ly Mi.r.0))

p=—00 g=-

=1 1 Home(K,, Home(Lo M,.,.0)).

p=—® g=-x

(@uf)okn)a(ls) = O ((fokr)a(lp)) + (=1)" " (fo-1 (Oxcks))a(le)
= aM((fpkp)q(lp)) + (“DM'” (fpkp>q—1(az.lq)
+ (=D, 1(0ky)) o) (see (1) @

for k€K, 1,ELy f,: K,—> Hom,.,(L, M), (fik)q: Li—> M..»:s and 50 on,
wheré 9,/ is the boundary in Hom,(L, M).
With the above situation we also define

Hom,(K ®xL, M)= T 1 Homg(K,RxLy Mo,

p=-00 g=-—

@uf) ol @ b)) =04 (Fpalle @ 1)) + (= 1) f 1, @kkr @ 1)
+ (=D, (ke @Oy 3)

for k,&Ky LEL, fEHM,(K®:L, M), fr14: Kyt QeLle— My in f, and so

on, where 3y is the boundary in Hom.(K ®;L, M) and the complex K ®, L is defined

by (K®eL),= ¥ (K,X:L,) with the boundary TR ERI)=0,k X L+(~D%k,® 9,
»

tg=n
Using the natural isomorphism 7 : Hom,(K, Homg(L, M)) = Hom(K ® L, M)
we can prove 7(9uf) = dx(nf), where f& Hom,(K, Homg(L, M)). By (2) and (3)

we have

@) ey @ 1) = CuMf) als @ L)+ (1" (111 . 1,4@xkr @ k)
+ (=D ) 5,01 (ke @ 9,1)
= au((fpkp)qaq)) + ("‘D"”(fr—l(axkr))qaq)
+ (=D (foky) g1 (Ond)
= ((@af),(8))aU) = M@af))pallr @ L)-

where (f),.q(k, @ L) = (fiks)o(l) by the definition of 7 (see page 144 of [2]). Since
@@ nabe @ 1) = M@af))r ok, @) is true for all p, g, and # as above we have
H,(Homg (K, Homg(L, M)))=H,(Homy(K ®.L, M)). Y
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As a special case we shall take a situation which (a) K and L both are positive
complexes with lower indices such that

K: oieeil ..__)K‘___) p] > e .___)Ko___)o
15
L eeveenins .__.QL’"._L_> Lm—l —— ererenaes —_—— LO —0

thent Hom,(K, Hom.(L, M)) becomes a negative complex with lower indices because #
in Hom,(K, Homg(L, M)) should be zero or minus to preserve zero or minus indices
in M. We shall write down Hom, (K, Hom.(L, M)) of this case in detail:

Hom, (K, Homg(L, M)) = Hom,(K,, Hom(L, M)) = Hom(K, Homg(Ls M,))
Hom., (K, Hom,(L, M)) = Hom.(K,, Hom,(L,, M,))
@ Hom (K, Homg(L,, M_,)) @ Homg(K;, Homg(L,, M),

Therefore if we put Hom_, = Hom®, M_, = M* then Hom*(K, Hom,(L, M)) is expres-
sed as follows :
Hom'(K, Homg(L, M)) = Hom,(K,, Homg(L, M°))

Hom'(K, Hom.(L, M)) = Hom,(K,, Hom,(L,, M%)
@HomR(Km Hom,(L,, Ml)) @HomR(Kh Hom, (L, Mo))1 """""

7

Homn(K’ HomR<L, M)) :20 "2‘; HomR(KP, HomR(Lq’ Mn—pfq)), .........
=

=

With the above preparation we shall define the functor Text. Let 4, B and C be

Hom,(X,, Hom,(Y, I"* 9) (> 0) with boundary 8, such that

(@af)p(2))a(¥2) = (%8 )a(¥)) + (—1)" 2 (f12,) 4—1 (Osya)
+ (_l)ﬂl(fp—l(aaxp))q(yq)

as (2), where x,&X, and y,&Y, Define
Textr(A, B, C) = H*(Homg(X, Home(Y, D)) (> 0)

(22 " (Homz(X®: Y, D) by 4) n>0),
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where H is the homology functor for 94 (for 8, see (3)). We shall prove that Text:
(A, B, C)(n>0) is independent of the choice of X, Y and I.

84’ f
Let us take other projective resolutiens X'—> A with the boundary 9, and

EB, EC’ .
Y—> B with the boundary 9’ and another injective resolution C—- I’ with the boun—
dary /. Then there are chain transformations ¢ and ¢’ in the commutative diagrams

E4 £p Ec

X—>A Y—B C—>1
A A A
‘PAjJ( Q?A, ?’al E‘PBI S"cl !‘Pcl 6]
‘ } !
X _ & a4 v_& g c & 7
satisfying
PApa = 1y Ps'ps = 1, Plpe = 1,
(wm’ ~ 1 <<Pa<Pa’ ~1, and (%%’ o~ 11')
where ~ means that both sides are chain homotopic. There is then the commutative
diagram
Hom (g5, &)
Homg(B, C) Hom,(Y, D
Hom(gsz’, p) 1 Hom(ps'pc) 6
] Hom(ed', &¢”)
Hom,(B, C) Hom,(Y’, I")

satisfying  Hom(gs, ¢c’) « Hom(ps', pc) = Hom(Ps'Ps, p'Pc) = Ihome (Y, I)
Hom(gs', ¢c) « Hom(ps', 9c) = Hom(psps’, pcpc’) = Ihome (Y', I)

where Hom(ps’, ¢¢) and Hom(gs, ¢.) are chain transformations which implies H(Hom,
(Y, D)) =2 HHom,(Y', I')).

From (5) and (6) we also get the commutative diagram

Hom (g4, Hom(es, £.))
Hom, (A, Homg(B, C)) Hom,(X, Hom,(Y, I))
Hon(p4, Hom(gs, ?c’))? Hom(g,', Hom(ps’, 9c))

Hom (e.’, Hom(es', &) !
Hom, (A, Homg(B, ©)) Homg (X', Hom(Y’, I))

satisfying
Hom(p., Hom(ps, o)) - Hom(p,', Hom(p,, ¢c))
= Hom(p, ¢, Hom(psps, Plpc)) = IHome(X, 1))
Hom(p,, Hom(ps, 9c)) - Hom(p,, Hom(p, @)
= Hom(p.p4, Hom(psPs, Pcpc’)) =2 1Home (X', Homg(Y", F))

where Hom(p,, Hom(ps ¢/)) and Hom(e,’, Hom(p,, ¢.)) are chain transformatians.
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This implieis
H(Homg(X, Hom.(Y, I))) = H(Hom, (X', Hom,(Y’, I'))).
We shall prove that Text.(A, B, C) = Text.(B, A, C). Since

Hom, (A, Hom,(B, €)) =~ Hom(A ®z B, C) = Hom,(B Q. A4, C)
= Hom, (B, Homz(A, C)), in consequence we have that
H*(Homg(X, Hom,(Y, I)) & H*(Hom,(X ®: Y, D) = F"(Hom (Y @ X, D)

= H*(Homg(Y, Hom (X, I))

which implies Texiz(A, B, C) 2 Texti(B, A, C), where X, ¥ and I are the same one
as in the definition of Text.

Exameie 1. If Tor®(B, C) =0 for n > 1 then for projective resolutions X’ —~— B
and X" — C over R-modules B and C, respectively, X' ®; X" is a projective resolution
over B ®;C. Let us take a projective resolution X— A over a R-moiule A and an
injective resolution D) —> I over a R-module D. We have then

H*(Homp(X @z X' Qr X", I) =2 H*(Hom,(X, Homy(X' ®¢ X", 1))
= Textn(4, B&:C, D)

If we put the right derived functor of Hom,(A ®. B ®;C, D) = Quext, then we have
Text (A, B®rCD) =2 Quext:(A,B,C,D) under the condition Tor?(B,C) =0 for n > 1.

In consegence, Text, in the right derived functor of Homg{4, Hom(B, C)) and
contravariant in A, B, and covariant in C

Lemma 1. Textd€A, B, C) = Homgz(A, Homg(B, O)).
Proof. In the sequence

a 4
0—> Hom,(Xe, Homg(¥y, ")) —> Hom, (X, Home(Y;, ID)
@ Homg(Xo, Homg(Y,, I%)
@ Hom, (X,, Hom,(Y,, I')),

Ker 9}, = Text(A, B, C). Since there are two exact sequences

94 &
Xi— X;—> A—>0

Hom (&5, &¢) 'y
0 —- Hom(B, C) ————— Homg(Y,, I®) —> Home(Y,, I') @ Hom,(Y,, I*

and Hom is left exact in each argument we have the exact sequence
Hom (1, 25") +Hom (9,4, 1)

0—> BHome(4, Homg(B, C)) — Hom,(X,, Hom.(Y,, I))
HUmR(Xu Home(Y,, I)) @ Homg(X,, Homg (Y, 1)) @ Home(X,, Home(Yy, I')) (see
Proposition 4. 3a on page 25 of [1]). Since &, =Hom(l, 9,")—Hom(9,, 1) we have
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Ker of, = Text%(A, B, C) =~ Hom,(A, Hom,(B, O)).

We can easily derive the following.
(1) From Lemma 1 above Text} is left exact in each argument.

(i) If A is projective, then Hom,(X, Homg(Y, I)) becomes
, .
0— Hom®(A, Hom(Y, D)) —> Hom!(A, Homg(Y, I)) ——>--vrreer

a 4
In general, since 0-— Hom®(Y, I) = Hom!(Y, I) —> «+veeevet is not exact Text:
(4, B, C) =0 for n>0. This is true when B (or C) is projective (or imjective). (see

Corollary 1 in § 2.)
(iii) If A and B are projective then Homg(X, Homg(Y, I)) becomes

o)
0—> Homg(A, Homg(B, 1)) —> Homg(4, Homg(B, I')) ——> -
which is exact. Therefore Text?(A4, B, C) =0Cfor » > 1. This is also true when A4

(or B) is projective and C is injective.
(iv) For an exact sequence 0—> A'—> A—> A" — 0 of R-modules we can

always take projective resolutions X’, X and X" over A’, A and A”, respectively, such
that 0 — X'——> X— X" — 0 is split exact (see page 79 of [1]). We ahve there-
fore the exact sequence 0— Hom,(X", Hom,(Y, I)) —> Homg(X, Hom.(Y, D) —
Hom,(X’, Hom,(Y, I)) —> 0 where Y —— B is a projective resolution over the R-module
B and C—— [ is an injective resolution over the R-module C. Therefore there is the

long exact seguence
0 —> Text?(A”,B,C) — Text%(A,B,C) — Texty (A, B, C) — TextL (A", B,C) —> -,

- 2. Speical Cases
Let K and L be complexes over-a commutative ring R with boundaries 9, and 3,,

respectively. To prove Theorem 1 below we shall show the following.
Lemma 2. If every K, in K is projective as a R-module and the boundary oy in K is

identically zervo, then there (s an isomorphism
o, : Hy(Homg(K, L)) & TT Home(Ky, H,.,(L)).
P=—-w

Proof. Put 8,(L,.s:1) =Im(@.),.» the kernel of the mapa, : L,.,—> L;.,_., =Ker
(@) nsr and so on. We have then the commutative diagram
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0 0
i\ J
0— Im@),., — Ker(@),.,—> H,.,(L) —> 0

2]

Ln+P+l B Ln*l’

3

m+p-1
where each row and column is exact. Now, since each K, is projective the functor Hom,
(K, —) is exact. From these facts we have therefore the commutative diegram

0 0
0 l
0 — HomR(Kh Im(aL)»+P> —> HQmR(Kh Ker(aL)nw) —_> HomR<KP! Hn+p(L)) -— 0
Hom(Kpy Lyips) —>  Home(Kp La.»)

*

Homg (K, Lyus-1)
with each row and column exact, where the arrows with * are the boundary @, in
Homg(K, L) (0, =0). This implies that for each p
Hom,(K,, H,.,(L)) = the p-coordinate of H,(Hom.(K, L)).
We then proved our lemma.

Asin § 1, let A, B and C be R-modules and their projective or injective resolut-
ions with boundaries 9,, 95 0. be X—> A, Y—> B and C— [, respectively. Set

image of 9, = Im(X), i.e, image of 2, into X, = Im(X),
kernel of 2, = Ker(X), i.e., kernel of 9, into X,_, = Ker(X),
cokernel of g, = Cok(X), f.e., cokernel of 9, in X, = Cok(X),
coimage of 2, = Coim(X), 1.e., coimage of 2, in X, = Coim(X),

and so on. We have the following as special cases.
0
Tueorem 1. If X5 A is 0= X, 5 Xo— A — Oexact) there is an exact sequence

0 —— ExtL(4, Ext3 (B, C)) — Text%(4, B, C) —> Hom.(4, Ext2(B, C)) — 0.

If dll quotients of each module in Homy (Y, I) are injective then the above sequence splits.
Proof. By the assumption we get

Im(X), = X, Ker(X), = X, Coim(X), =0,
Im(X)! = 0, Ker(X.)l == 0, COIm(X)l == Xp

Therefore there are split exact sequences of complexes

; .
0—> Ker(X) —> X;]:?_Coim(X) -0 O
P

and splitting homomorphisms ¢. (Note: Coim(X) is a projective complex.) Moreover, we
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also get the exact sequences of complexes
I'*
E: 00— Hom,(Coim(X), Hom.(Y, I)) —> Hom.(X, Homg(Y, 1))
i*
—_— HomR(KEr(X>, Hom.’(’<Y1 I)) ~—0
and the exact homology sequence of E

S -1

OE 3k
""""" ~———> H*(Hom,(Coim(X), Hom.(Y, I))) —]-> H*(Hom(X, Homz(Y, D))
i* &
—> H*(Homz(Ker(X), Homg(Y, I))) = c-veeen ,

where 937! and &7 are connecting homomorphisms. The middle portion of the above

sequence can be expressed in terms of og as a short exact sequence
0 — Coker &' —> Texts(A4, B, C) —> Ker — o — 0. (2)

For each p the sequences

a ’
1 0—s Coim(X),.; —> Ker(X), —> H,(X) —> 0 3)
is exact and the homomorphism
2,/* © Hom"(Ker(X), Homz(Y, I)) — Hom**'(Coim(X), Homg(Y, I))

is induced by (3), where 2,’ is from the boundary 2, in X. In consequence the hom-
omorphisms on homology induced by 9,*(up to sign) are connecting homomorph-
isms ;. In detail, 9; is defined on cycles by the “switchback”(see page 45 of [2])
F¥104%71, where 9y is the boundary in Hom;(X, Hom;(Y, I)) as before. Since Ker(X)
has zero-homomorphisms as its boundary a cycle g in Hom*(Ker (XD, Hom(Y, I)) is a
family {g, : Ker(X), — Hom**(Y, )} with 84'g =0, where 9, is the boundary in
Home(Y, . In (1) we get X, Ker(X),®P Coim(X), and hence each g, can be
extended to f, . X, — Hom**(Y, I) with 8,f, =0. That is, a cycle g in Hom*(Ker
(X), Homg(Y, I)) can be extended to f in Hom*(X, Hom,(Y, I)) with 3, =0 and
Onf = x04f for this homomorphism f. Since 2, ; X,— X,_, is decomposed as X,—

Coim(X),,E,—» Ker(X),., — X,_; we have 9yf = + j*d4i*f for each f as above,
where 9,%= 7*9,/%** and 8,f = £ 4f. If we take (*! g to be f then j*! g4* ! g=
+ 9,/%g since 1*f = fi =g. Therefore 9; is induced by = 9/*.

Using Lemma 2 and 9; = *+ 3,/* above we have the commutative diagram (up to

sign)
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a,,-:ia’*

H* (Homy(Ker (X), Home(Y, D) ——> H*1(Hom,(Coim(X), Hom,(Y, I)))
a, | IR . LR

oo

o aA/*
1 Hom,(Ker (X),, H"*(Hom,(Y, I))) —> 11 Home(Coim(X),.,, H"*(Home(Y, D)).

p=—c p=

Hence Ker g, = Ker 0;/*(lower line) and Coker 9y =2 Coker 9,/*(lower line). On the
other hand, from (3) we get an exact sequence

1%

0 — Home(H,(X), H"*(Hom(Y, D))) — Home(Ker(X), H'*(Home(Y, D)) —>

S*
Homg(Coim (X) .y, H* ?(Homg(Y, D)) — EXt;a(H,(X), H*#(Homg(Y, 1)) — 0
@

which gives the kernels and cokernels of 3,/* as
Ker &, = Ker 8,/* = TI Home(H,(X), H**(Hom,(Y, 1)) = Homg(A, Exts(B, C))
p=—-W

Coker &~ 2 Coker 8,/* = 11 ExtL(H,(X), H*-*-1(Hom,(Y, I))
- p=—00
= Ext,'(4, Extz"1(B, O),

where we should note that Hy(X) = 4, H,(X) =0 if p=+0 and Ext,(Ker(X), H**
(Hom(Y, D)) =0 (Ker (X), is projective). Hence we have the exact sequence

8 @
0 — Ext}(A4, Ext3 (B, O)) — Text2(4, B, C) — Hom(A4, Ext2(B, C)) —> 0

from (2) as the first half of the theorem.
In this case the homomorphisms a and 8 are decomposed as follows, respectively
(see page 81 of [2]).

" .
a: Texti(A4, B, C) —z——> H*(Homg (Ker(X), Hom,(Y, I))) —> Hom,(X,, H"(Hom.(Y, )
2 Homg(Xy, Ext3(B, C)) —> Homy(4, Exti(B, C)), &)

where the last arrow stands for the additive relation which is the inverse of the first
monomorphism in (4).

S*-t

B Extl(A, Extz (B, 0)) — Homg(X;, Ext3'(B, C)) = Hom,(X,, H"*(Hom;(Y, I)))

! 4

s Hr(Hom,(Coim(X), Homg(Y, D)) ——> Texty(A, B, C).

To show the second half we consider the diagrams (i) and (i)
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@ 0 0

0—> Im(X) — Ker(X) — H(X) — 0
0;—+Im(}0-——> )I(——> Cok(X) —> 0
¥
Coim (X) —— Coim(X)

0 0
(split)  (split) ‘
in (1) and (i) (below), each column in the first (i) and each row in the second
(ii) is split exact and the other rows and columns are exact since Coim(X) is
projective and Coim(Hom, (Y, )2 Im(Hom,(Y, I)) injective by the assumptidn.

(i) S 0 0
0 — ImHom,(Y, D) — Ker(Hom,(Y, 1)) — H(Homg(Y, D)) —> 0 (sphit)
. 0— ImHomg(Y, I}) ——> Homg (Y, I) —> Cok(Hom.(Y, ) — 0 (split)
o Coim(Homg (Y, I)) =Coim(Hom(Y, I))
0o 0

In this situation we get the following commutative diagrams successively.
) 0 0 0 0

Ker(i() — H(iO —> 0 Ker(Homg(X, 1)) igg‘H(Homg(K NH)—0

i P :
X— Cok(X) — 0 Hom(X, D) <= Cok(Homg(¥, IN) — 0

ii) From i)
£ (epi.) '
Hom, (Cok (XD, Ker(Hom,(Y, I))) === Hom(H(X), H(Hom,(Y, D))
7 | (mon.) . Hom(py, 92) / 7| (mon.)
<

Homg (X, Homy(Y, I)) Homg (Ker (X)), Cok (Hom:(Y, D))

i) Taking homology in ii),

£ (epi.
Hom,(Cok (X), Ker(Hom(Y, I))) e..«?i‘pl—)* Hom, (H(X), H(Hom(Y, I)})
, . Ho% ya 7| (mon.)

Texte(A B, ) ——r J > Homg (Ker(X), Cok(Hom,(Y, 1))
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iv)

- £
Hom:(Cok (X), Ker(Hom, (Y, D)) === Hom, (H(X), H(Hom(Y, D)))
Hom(gpy, 92 "
. P2,

7 o

Texto(A, B, O ———<» Homy(Ker(X), Cok (Homy(Y, 1)))

7 l(mon.) | ad

i* I*| (mon. )

- Hom,(Ker(X), HHomg(Y, D)}

 H(Hom,(Ker (X), Homg(Y, I)))

(Note:
H(X) @ Coim(X) =2 Cok(X) ImHomg(Y, I)) @ HHom(Y, I)) = Ker(Hom,(Y, I))
Ker(X) @ Coim(X), = X ImHom(Y, I)) @ CokHom(Y, ) = Homg(Y, I).)

v) In each degree 7,

£
Hom*(Cok (X), Ker(Homg(Y, N)) ———————> Hom(H(X), H*(Hom,(Y, I)))

Hom(py, ¢,) ./ —
77\{( i1 "’//4,5/ 7! (mon.) | ed
Textr(4, B, C) — Hom,(X,, Cok(Hom.(Y, I)),)
i* l*
H+ (Hom, (X,, Hom, (Y, 1)) > Homg(X,, He(Home (Y, D)),
a,

where & = Fad*, l*-and T are monomorphisms and gd stands for the additive relation
which is in the composite of e (the converse of 7). Since ImzC Im I* the homomor-
phism a in the above diagram is the composite g-& = qd-I* a,-t* and the same one as

a in (5).
By the splitting homomorphisms ¢, and ¢, we have the right inverse n-Hom(p,,
;) of a which implies that the exact sequence in our theorem splits. Since Hom(p,,

¢,) has no naturality the isomorphism
Textz(A, B, C) = ExtL(4, Ext3 (B, C)) @ Hom,(4, Extr(B, C))
is non-natural. (Note: When Y— B is 0 — ¥, —> Y, — B — 0 (exact) the above
exact sequence (in the theorem) becomes
0 — Extt (B, Extz (4, 0)) — Texti(A, B, C)
~ Text* (B, A, C) — Homg(B, Ext:(4, C)) — 0.
Moreover, if each quotient of all modules in Hom,(X, I) is injective the above exact

sequence is split(non-natural).)
CororLary 1. If A (or B) is projective qas a R-module then
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Texth(A4, B, C) =2 Homz(A, Exti(B, C)) (=2 Homg(B, Ext:(A4, ).

Proof. Since A is projective we can take 0 —> 0 —> A —> A — 0as a projective
resolution over A. This implies that X; =0, X, = A in the above theorem. Therefore

0—> Ext}(A4, Exty (B, C))—> Textsy(4, B, C) —> Hom.(A4, Ext3(B, C)) — 0

is exact. We have therefore Textn(4, B, C) =2 Hom,(A4, Exty(B, C) since Extl(4,
Extz (B, C)) =0. When B is projective we can apply the same argument as above.

CoroLLArY 2. Let X—> A be 0—> X, —> Xy —> A—— 0 asin Theorem 1. If the
projective dimension of B is <n (positive integer) then

Textr (A, B, O) = Extl (A4, Extv(B, O)).
Proof. By Theorem 1, the sequence
0— ExtL(A, Exti(B, O)) — Textn*'(4, B, ) —> Homg(A4, Extz*(B, C)) — 0
is exact. Since Ext3*1(B, C) =0 we get

Texts"' (4, B, C) = Ext}(4, Extz(B, C)).

as asserted.

Examrre 2. Let F be a field and let x be an indeterminate. Then we get the poly-
nomial ring P = F[x] which is commutative. We can put F = F[x]/(x), where (x) is
the principal ideal consisting of all multiples of x. Therefore F becomes P-module by
the P-module homomorphism £: P—> F which is defined by ¢(*) =0 and ¢(e@) =«
for « & F. In this case we have the following sequence as a projective resolution
over F.

7] 3
0— PU—>P—F—),
where PU is the free P-module generated by U and 9 is the P-module homomorphism
with 9U == x. Therefore Theorem 1 is valid in the case which we take F, B, and C as
P-modules and the sequence

0-— Ext,(F, Ext:"'(B, C)) — Text:(F, B, C) — Hom,(F, Ext:(B, C)) — 0

is exact. The case which the commutative ring R above is a hereditary ring is an
example for the second half of our Theorem 1. We can see this example in the next

section.

3. Text over the ring Z of integers

let A, B and C be abelian groups. We shall take

2
0— X;— X, - A—0 (as a projective resolution over A)
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2
00— Y, -—B> Yo—B—0 (as a projective resolution over B),
)
0—sC—s1I° = I'—0 (as an injective resolution over (),

then X and Y are free complexes and we get complexes
Hom(X, Hom(Y, D)) 2 Hom(X® Y, I)

with boundaries 9, and 3, (see § 1), respectively, where Hom and @ mean Hom,
and ®, (in this section the subscripts Z are omitted). We should note that Hom(Y, I)
is an injective complex and X ® Y is a free complex. Moreover, since Z is a heredi-
tary ring each quotient in Hom(Y, I) and each submodule in X ® Y are injective
and free, respectively.

LemMa 3. With the above situation the following hold.

(1) Text'(4, B, C) =2 Ext'(4, Hom(B, C)) @ Hom(A4, Ext'(B, ()
2= Ext'(A ® B, C) @ Hom(Tor,(4, B), O (non-natural)

(i) Text*(4, B, O) = Ext'(4, Ext'(B, ) = Ext'(Tor,(A, B), ) (natural)

(ii) Text"(A, B, C) =0 for n>3.

Proof. Since Hom™(X, Hom(Y, ) =0 for >3 (see § 1) (iii) is true. By the
above description we know that Hom(X, Hom(Y, I)) satisfies the hypothesis of Theo-
rem1in § 2 and Hom(X ® Y, I) satisfies the hypothesis of Homotopy Classification
Theorem (see Theorem 4.3 on page 78 of [2]). Therefore we have two split (non-

natural) exact sequences
0 — Ext!'(A4, Ext" (B, C)) —> Text*(4, B, C) — Hom(4, Ext*(B, C)) — 0,
0—> I Ext!(H,(X ® Y, H=*1(I)) —> Text*(4, B, C) —>

p=—

I Hom(H,(X ® Y), H*(I)) —> 0.

p=—0

When we note that H*(I) =0 for n &= 0 we can easily deduce (ii) and (i) form the
above two sequences.

Examie 3. Let Z,(a,) be a cyclic group of order rs generated by a. Put 4=
Z,..(a0), B=1Z,(by) and let C be any abelian group. Since Hom(Z,(gy), G) = 0,(G) =
{glg € G, mg =0} and Ext'(Z,(g,), G) = G/mG (mG = {mgig € G}) for an abelian
group G we know the following using Lemma 3 above.

Text*(A, B, C) = Hom(Z,(a), Hom(Z, (b), C)) = 0,(C),
Text'(4, B, ) = Ext'(Z,.(a,), Hom(Z,(by), C)) @ Hom(Z(an), Ext'(Z,(by), C))
20,0) ® C/rC
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Text?(A,B,C) = Ext} (Z,.(ay), Ext'(Z,(b,),C)) == C/rC

Let K and L be complexes of abelian groups with each K, and L, free over the

ring Z of integers and let M be a complex of abelian groups with each M, is injective,
From Lemma 3 we have that

Text®(H,(K), H,(L), H,.,.q(M)) = Hom(H,(K), Hom(H,(L), H,.,.,(M))) (natural)
Text! (H,(K), H,(L), H, . ».,(M)) = Ext'(H,(K), Hom (H,(L), H,.,.,(M)))

@ Hom(H,(K), Ext' (H,(L), H,.+a(M))) (non-natural)
Text*(H,(K), Hy(L), H,.,.o(M)) =2 Ext'(H,(K), Ext'(H,(L), H,.,+s(M)))  (natural)
Text™(H,(K), H,(L), H,.,.,(M)) =0 (for m > 3)

for each p,q and n, where Hom,(K, Hom(L, M)) = - il Hom(K,, Hom (Lq, M,:5.4)).
p=—0 g=—c0

Define
Text*(N(K), H(L), HM)) =11 -1 Text™(H,(K), Hy(L), Hy.p.(MD).
P:—m q=—00

for m =0, 1, 2 then the following hold.

Tueorem 2. Let S, = H,(Hom(K, Hom(L, M))). Then there are subgroups Q< N,.,
<R, <SS, and isomorphisms

.o Text? ,(H(K), H(L), HM)) 22 N, ., (natural)
a,.,: Text!, (H(K), HL), HM)) =2 R,.1/N,.: (non-natural)
o, : Text®(H(K), H(L), HM)) = S,/R. (natural)

(Note: see §1 for the boundary in Hom (X, Hom(L, M)).)

Proof. Since K is a projective complex and Hom(L, M) an injective complex we
have the split (non-natural) exact sequences '

0 —:zlci’Ext‘ (H,(K), H,.,.,(Hom(L, M)))— H,(Hom(K, Hom(L, M)))
— 1 Hom(H,(K), H,..,(Hom(L, My))— 0

0 I EXC(H,(L), Huvs.q1(M)) ~—> H,.p(Hom (L, M))
— I Hom(H,(L), Hyso.a (M) — 0

by the Homotopy Classification Theorem, where we should know that L is a projective
complex and M an injective complex. According to the above two sequences we
can make the following diagram.
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0 0
)
P_IL 1} Ext‘(H;(K) Ext! (H L), Hypiqa(M)))  Hom(H,(K), Ext'(H,(L), H, . piq: (M)
0—> i
=]-££th(HP(K> H, ., (Hom(L,M)))—H, (Hom(K Hom(L,M))}—~Hom(H,(K)H,.,(Hom(L,M)))
: \] —— 0 (exact)

I - 1 Ext!(H,(K), Hom (H, (L), Horprary (MDY Hom(H,(K) Hom(H, (L), H,.p.o(M)) " -

p=-0© g= -0

! {
0 (exact) 0 (exact)
Therefore,
jt H.(Hom(K, Hom({I, M)) —> H H Hom(H,(K), Hom(H (L), H,.s.a(M)))
o
is an epimorphism and '

ic 0l Ext‘(Hp(K) Ext! (Ho(L), Hyopa:2(M))) — H,(Hom(K, Hom(L, M)))

p=-® g=-00
is a monomorphism.
Set Ker j = R,.; and Im i = N,., then

R, = 11 Ext'(H,(K), H,.p.,(Hom(L, M))
p=-00

@® 1 1 Hom(H,(K),Ext'(Hy(L), Hyrprqnn(MD)) o))
p:—oo q=—00
and ‘ ‘

Nepst T ExtH,(K), Ext (L), Hyrogos(MD)):

When we note Text®(H(K), H(L), HM)) =~ Hom,(H(K), Hom(H(L), H(M))) (see
the definition above) we see that there are natural isomorphisms

: Text(H(K), H(L), H(M)) = S/R,.,
d..2: Text?, ,(H(K), H(L), HM)) = N,.,

(_the naturality of a, and a,., is from the naturality of ¢ and j).
From the first column in the above diagram we get

T Ext! (H,(K), Hysa.1(Hom(L, M)))/ H H | Ext!(H,(K), Ext'(Hy(L), Hovpro(MD)3

p=~10

~0 0 Ext'(H,(K), Hom(H,(L), H,.p.q.:(M))). @

p=—® g=-00
Combining (2) and (1)
Roi/Nyo = TI n Ext(H,(K), Hom(Hy(L), Hyvpeair(M)))

@1 ﬁ Hom (H,(K), Ext (Hy(L), Hyrp.si(M))) (natural

p=—0 g=-—0
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o Text!, (H(K), H(L), H(M)) (non-natural)

as our assertion.
Define

Text®(H(K), H(L), HM)) = 3 Text®(H(K), H(L), HM))
Text'(H(K), H(L), HM)) = % Text!(H(K), H(L), H(M))
Text?(H(K), H(L), HM)) = X Text?(H(K), H(L), H(M))

which are direct sums over n, then the following holds.
CoroLLARY 3. There exist subgroups 0 < N < R < S and isomorphisms

a,: Text?(H(K), H(L), HM)) =2 N (natural)
a,: Text'(H(K), H(L), HM)) = R/N (non-natural)
a,: Text®(H(K), H(L), HM)) = S/R  (natural)

where S = 2,3 S, R= E'R,, and N = Z"N,, (dirvect sum).
Proof. It suffices to prove R,.1/Nyis @ R,.2/Nyis & (Res1 @ Roi2)/ (Nyi2 @ N,io) for
some n# by Theorem 2. We have the exact sequences
0—> N,.;— R,y — 11 —0, 0—N,\s—R,.,— T,—>0
where T, 22 R,.,/N,., and T, =2 R,.;/N,.s. Since
0— N: ® Nys— R @ Ry— T, @ T, —0
is exact we proved

Rt D Ruu)/WNais ® Noun) 2Ty @ T2 Rt/ Nyot @ Ryia/Nyos
as required.

4, Applications of Spectral Sequences to Text

Let R be a commutative ring and K a complex of R-modules with the boundary
9 and filtration F such that for an integer p

......... o FPK o Fra K oS TETTET aK(FPK') c F’K.

In this case there is a spectral sequence {E,, d.}, r = 1,2, -------- which is a covariant
functor of (F, K), together with natural isomorphisms

Er > H(FPK/F?*'K), i.e., E% = H*9(F*K/F*K).

In particular, if F is bounded(or convergent below and bounded above) {E,,d.} converges
to H(K), i.e., Ez=> H(K) (see page 327 of [2]). More explicity,
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Ep = FP(H(K))/F ' (H(K)), i.e., En = FF(H(K))/F (H9(K)),

where FP(H(K)) means the image of the map H(F*K) — H(K) induced by the
injection F*K —> K,

In detail: Define Z» = {acF?K | 9,¢=F’"'K} and the canonical projection 7, :
FPK — F*K/F*-'K, Then
Er = 0,Z8/1,(0xZ22)), i, Er=t = 2/, )
(see page 328 of [2]). Put
Cos = m,Zp, Bpt = m,(@x 2ty ")
then Er* = (re/Br4 or Er = C?/B* and there is a tower
BcBc. . C B e c T o cCc =48,

where B =0, C;=E;=F’K/F**'K. In this case d,:E?—> Er* is defined by the
comp051te
CP/B“ projection CP/Cr+l o Bp+r/Bp+r1n]eCt10n Cp+r/Bp+r = Er+r
hence Ker ¢ :Cfﬂ/Bl; and Imde 22 Beit/Betr, e
Ker dp ~ Cp+q1/B:+v Im df.q — Eg+r.q—r+1/l—3€+r,q—r+l (1)
(see page 329 of [2]).

LemMa 3. If Ep-s9+s=1=0 for r = s < co then the sequence

dp q
0— Espfl_)qu___) Ep+sq s+1
i$ exact.
Proof. Put r =35 then E¢r=+#**~' = () by our assumption, which means Im dr;sete-1

o Bra /Bra =0 (see (1)). Hence

0— Erg, (= Cot,/B 18— B 2T/ By

is a monomorphism and i(Erg,) = Crg,/Bre which is isomorphic to Ker d?e(see (1)).
Therefore the following sequence is exact
d;q
0— Eryg ——aE“"’———-)E"“" s+L
As before, let Hom, (X, Homg(Y, I)) be a complex which is constructed from a pro-
jective resolution X over R-module A, a projective resolution ¥ over R-module B and
injective resolution over R-module C, where we asssume that 9y, 94, 9, are the boun-
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daries in Homge(X, Hom,.(Y, 1)), Homy(Y, I) and X, respectively. Set
K = Hom(X,Hom.(Y, ), T7? = Homy(X,, Hom(Y, 1)),

K= 3 Trs,
Ptg=n
where Hom?(Y, I) = 3 Homg(Y,, ). Then we can define a filtration F of K by
mt+n=q
FK = i % T K, i.e., (F‘"K)" = i Trr-rc K™
r2p g=0 r=p
Let f= (- 00, fry e R S ( RS ) bein F?K and in K*, where f, . X, — Hom"-*

(Y, D), etc.. Since

(a}lf);(x.n> - aﬂl(fpxp)v (aaf)hl (%p21) =04 Upi1Xpur) + (_1)”Hfﬂ(azlxﬂ+l)’
...... v Oaf)nii (Fer) = (=D, (0%,.1)

for 2, € X,, and so on, we get
a};fz ( """ » 01 aH,va aH,fP+l+<_1)n+lfPaAv """ * (—l)nﬂfnam 0: """ ),

where 8y'f, : X, = Hom* 2 (Y, D), 04/ frey+ (—1)""f0, . X,y — Hom*?(Y, I), and so
on. But, since Hom(X,, Hom"?*'(Y, I},), ----- , Home(X,.;, Hom®(Y, I)) all are in F’K
we have 3yf € F?K for every f & F*K. Therefore F is well defind as a filtration of K
and (F, K) determines a spectral sequence such that

= H(F*K/FP\K), ie., Ep»t= H*(FK/F"'K).
Intuitively, we can see the following properties.

(i) T»1=0 for p <0 or ¢ <0 and FPK=K if p<0.
(i) FPK/Fr'K = 3, Tr7 = Y, Homg(X,, Hom?(Y, I)) which is a complex such that
q q

2) 2
Homz(X, Hom'(Y, 1)) —> Hom(X,, Hom!(Y, I)) —> --+--r

(Of course, if p <0 then FPK/F?*'K =0). For example, we can consider f, & Hom,

(Xp, Hom®(Y, I)) asa f=(-- , 0, f 0, cnne YE K? and for x, € X, we get 9,f (-~ ,
0, x5 0, -+---)=3,/(fsx5). This means that the boundary in F?K/F**1K is epual to 9,
which is the boundary in Hom,(X, Y).

On the other hand, since 2(PK/F’”K ) = K (with the boundary 2,") we get
=
E, = §0E,’ = H'(K), where H is the homology functor for the boundaty &,
= ’

In H'(K) the boundary becomes zero we can get H(E)) = H'(H'(K)) = E, = Zm} Ey,
. »2=0
where H ‘s the homology for d, and H” the homology for 9, which has sign +
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In consequence

Epe= H*(H(K)), ie, Ep12Ext?(A, Extz?(B, C)). The detail: H* (Hom,
(Xo Homg(Y, D)) =2 Homg(X,, H'"*(Homg(Y, I)) = Hom(X,, Ext?(B, C)). (Note: In
the case which X, is projective Hom,(X,,—) is an exact functor and H(Homg(X,, Y))
2~ Homg(X,, H(Y)) for a complex Y of R-module.) Next H'#?(H7(Hom,(X, Hom,(Y,
D)) =2 H?(Home (X, Ext2(B, O))) = Ext,7(A, Ext,?(B, C)) because X is projective
resolution over A and Extg?(B, C) is a fixed R-module.

(i) Since F'K = K and F»*'K* = { for each degree » our filtration F is both conver-
gent below and bounded above. Therefore our spectral sequence {E, d,} converges
to H(K), i.e.,

Exts? (4, Extz2(B, CO)) => Textz*(A, B,C),
where the filtration degree is p.
v For p <0, FPK/F**'K =0 and for q <0, H*9(F?K) = 0. That is, H**(F?K) is
equal to Ker 94%/Im @, in the sequence
HI aHZ
Kra 'O FPK — K**1 | FPK — K**7'! N F?K.
Hr-9(F*K) =0 since for ¢ <0, K»*¢NF*K = empty, where o, and 0, are from 0.
With the above preparation we shall prove

Tueorem 3. There exists an exact sequence
0 — Exte! (4, Home(B, C))—> Texte!(A, B, C)—> Homg(4, Ext(B,C))
— Extg?(A, Hom(B, C))—> Text;(4, B,C)
and homomor phisms
Exte*(A4, Homz(B, C))—> Textz"(A4, B, C)— Homg(B, Ext."(B, C)).

Poorf. By the condition Gv) above our spectral sequence {E,, d4,} is first quadrant
and there are then edge homomorphisms

By = EYg —> EVd, — oo — BN (monomorphisms) @)

EP—> B0 > — EP0 — E#) = Er° (epimorphisms) 6))

Since E»¢ = F*(H+(K))/F*'(H**(K)) (see the first part of this section), F*(H*(K))
=H(K) and F*"'(H*(K)) = 0 we have

epi. mon.
B, — ExM(=F(H*(K))) — H(K)  (by (3))

epi. mon.
H(K)— B3 (2H*(K)/F'(H*(K)))— E* (by (2))
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Putting E3° = Ext (A, Hom:(B, 0)), E¥"=Hom,(A, Extz(B, C)) into the above
sequences we then get
epl. mon. epi. mon.
Exty (A, Homg(B, C))—> E»’— Texty(A, B, C) — E%’ —> Hom(Ext,(8, C))
as asserted in the latter half of the theorem.
Taken=1in 2) and =1, 2 in (3), then we have
EX(=H(K)/F'(H'(K)))—> E%' (monomorphism),
EL = Eb? >~ FI(HY(K)), E°= E»*= F*(H!(K)), respectively,
hence we have the sequence
mon.
0— EY(= F'(H'(K))) — H'(K) — E'(= H'(K)/F'(H'(K))) —> E}*,
epi. mon.
E2° — E%%( F2(H*(K)))— H*(K).
Therefore our proof requires to prove that two sequences
ar az’ mon,
0—> Eg’l—“" Eg.l___,_,. E%.o, Eg,l,____) Eg,o_, Eg,o(__, HZ(K))

are exact.
In Lemma 3, put p=0, g=1 and r=s=2 then Er =9 '=EF;%°=0 we

therefore get the exact sequence
d(z),l

00— EYt —> E' — E2°,
dz°
On the other hand, since E%°—— E¥ ' =0 we have

Kerd2*=~C2 /B2 = E2*=C%°/ g%°

(see (1)) and C%*=C%° In the sequence
3! (1]
E% —> E20— E20
since Im @' B}/ B}®, E3*=C}°/ B}* and E}*=C3°/B* =C%°/ Bx*(B:*DB),
we shall define @ by the canonical projection C2°/ B2°—> C%°/ B9, Then
Ker a =2 B2°/ B°(=2 Im d%Y)

and the sequence
do 1 a

2
By — Byt — B3¢

is exact. In copsequnce the sequence

%!
0 —> EY—> H'(K)—os B3 —> E3°—> H:(K)
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) proj. mon. mon.
is exact where g: H'(K)—> E3'— E2! and 7: E%°— E?°—s H(K). Put

E}? = Extl,(A, Hom,(B, C)), H'(K) = Text\.(4, B, C),
EY' = Homg(4, ExtL(B, C)), E»* = Ext3(4, Homg(B, C))
and H*(K) = Texti(4, B,C)

into the above sequence we then get the exact sequence in the theorem.

. The following diagram is helpful for us to
understand the above proof, where we can know
that

b, E,
\ i) E3° = Hom,(A, Homy(B, C))

E}* = Ext!(A, Home(B, C))

-

Eo = EWo =...... —=FE0 ...

Therefore we have the diagram

EL® = E}* = Ext}(A, Homg(B, C))
mon.

Textl (A, B, C)

N s
EY%! — E%' = Homg (A, ExtL(B,C) —>

¥
v 0

{
E?0 = Exti(A, Homg(B,C))— Ez*— 0

N
Text2(A,B,C)

} )
As a special case, let X—> A be 0— X,A—-——> Xy—> A—> 0(a projective

resolution over A). We have then the same exact sequence
0 — ExtL(A4, Exti (B, C))— Text%(4, B, C)— Hom,(4, Ext%(B, C))— 0

as in Theorem 1 which can be proved using the latter half of the above theorem.
Since EF*=0for p3+0orland r=1, 2, .- , we have the exact sequence

0—> El=i(22 F(H+(K)))—> H*(K)—> B3 (2H (K) /F* (HF (K))—> 0.
By the way, in the s=quence
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d;l,n dlz,n—vl d;z,n-fl dtz),n
Ez—l,n > E;’"_l > Eg,n—Z’ E2—-2,n+l > Eg,n > _E‘;,n—l7

4yt =dyt =0=d;%""' =d%", hence E}*'= EL*! and E%" = E%". Therefore
00— Eé’"_‘ —_— H"(K)-———% Eg’" — 0, i_e_,

0 — ExtL(A, Ext3 (B, C))— Textz(A4, B, C)— Hom,(A4, Exty(B,C)— 0
13 exact.
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